These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 39211581)

  • 21. C-H Functionalization of Polyolefins to Access Reprocessable Polyolefin Thermosets.
    Neidhart EK; Hua M; Peng Z; Kearney LT; Bhat V; Vashahi F; Alexanian EJ; Sheiko SS; Wang C; Helms BA; Leibfarth FA
    J Am Chem Soc; 2023 Dec; 145(50):27450-27458. PubMed ID: 38079611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical upcycling of commodity thermoset polyurethane foams towards high-performance 3D photo-printing resins.
    Liu Z; Fang Z; Zheng N; Yang K; Sun Z; Li S; Li W; Wu J; Xie T
    Nat Chem; 2023 Dec; 15(12):1773-1779. PubMed ID: 37640848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Green Recycling Process for Polyurethane Foams by a Chem-Biotech Approach.
    Magnin A; Entzmann L; Bazin A; Pollet E; Avérous L
    ChemSusChem; 2021 Oct; 14(19):4234-4241. PubMed ID: 33629810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reprocessable Polyurethane Foams Using Acetoacetyl-Formed Amides.
    Kassem H; Imbernon L; Stricker L; Jonckheere L; Du Prez FE
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37917002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxime-Based and Catalyst-Free Dynamic Covalent Polyurethanes.
    Liu WX; Zhang C; Zhang H; Zhao N; Yu ZX; Xu J
    J Am Chem Soc; 2017 Jun; 139(25):8678-8684. PubMed ID: 28557428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptable Crosslinks in Polymeric Materials: Resolving the Intersection of Thermoplastics and Thermosets.
    Scheutz GM; Lessard JJ; Sims MB; Sumerlin BS
    J Am Chem Soc; 2019 Oct; 141(41):16181-16196. PubMed ID: 31525287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyurethanes Modified by Ionic Liquids and Their Applications.
    Wang X; Zhao Z; Zhang M; Liang Y; Liu Y
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reprocessable Cross-Linked Polymer Networks: Are Associative Exchange Mechanisms Desirable?
    Elling BR; Dichtel WR
    ACS Cent Sci; 2020 Sep; 6(9):1488-1496. PubMed ID: 32999924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical Upcycling of Conventional Polyureas into Dynamic Covalent Poly(aminoketoenamide)s.
    Ma Y; Jiang X; Yin J; Weder C; Berrocal JA; Shi Z
    Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202212870. PubMed ID: 36394348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rational design of biodegradable thermoplastic polyurethanes for tissue repair.
    Xu C; Hong Y
    Bioact Mater; 2022 Sep; 15():250-271. PubMed ID: 35386346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. From Lignins to Renewable Aromatic Vitrimers based on Vinylogous Urethane.
    Sougrati L; Duval A; Avérous L
    ChemSusChem; 2023 Dec; 16(23):e202300792. PubMed ID: 37486785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic Hydrogenation of Polyurethanes to Base Chemicals: From Model Systems to Commercial and End-of-Life Polyurethane Materials.
    Gausas L; Kristensen SK; Sun H; Ahrens A; Donslund BS; Lindhardt AT; Skrydstrup T
    JACS Au; 2021 Apr; 1(4):517-524. PubMed ID: 34467313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual-Dynamic Chemistries-Based Fast-Reprocessing and High-Performance Covalent Adaptable Networks.
    Hu K; Wang B; Xu X; Su Y; Zhang W; Zhou S; Zhang C; Zhu J; Ma S
    Macromol Rapid Commun; 2023 Feb; 44(4):e2200726. PubMed ID: 36250433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Designed from Biobased Materials for Recycling: Imine-Based Covalent Adaptable Networks.
    Liguori A; Hakkarainen M
    Macromol Rapid Commun; 2022 Jul; 43(13):e2100816. PubMed ID: 35080074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability.
    Simón D; Borreguero AM; de Lucas A; Rodríguez JF
    Waste Manag; 2018 Jun; 76():147-171. PubMed ID: 29625876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanically Strong and Tough Poly(urea-urethane) Thermosets Capable of Being Degraded under Mild Condition.
    Yin Y; Xu Y; Zhang X; Duan B; Xin Z; Bao C
    Macromol Rapid Commun; 2023 Mar; 44(5):e2200765. PubMed ID: 36419259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vapor-Phase Dicarboxylic Acids and Anhydrides Drive Depolymerization of Polyurethanes.
    Liu B; Westman Z; Richardson K; Lim D; Stottlemyer AL; Gillis P; Letko CS; Hooshyar N; Vlcek V; Christopher P; Abu-Omar MM
    ACS Macro Lett; 2024 Apr; 13(4):435-439. PubMed ID: 38546447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of aliphatic polyurethane foams in soil: Influence of amide linkages and supramolecular structure.
    Skleničková K; Suchopárová E; Abbrent S; Pokorný V; Kočková O; Nevoralová M; Cajthaml T; Strejček M; Uhlík O; Halecký M; Beneš H
    Sci Total Environ; 2024 Feb; 912():169062. PubMed ID: 38061651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enabling Applications of Covalent Adaptable Networks.
    McBride MK; Worrell BT; Brown T; Cox LM; Sowan N; Wang C; Podgorski M; Martinez AM; Bowman CN
    Annu Rev Chem Biomol Eng; 2019 Jun; 10():175-198. PubMed ID: 30883213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic Covalent Polyurethane Network Materials: Synthesis and Self-Healability.
    Nellepalli P; Patel T; Oh JK
    Macromol Rapid Commun; 2021 Oct; 42(20):e2100391. PubMed ID: 34418209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.