These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 39211581)

  • 41. Advancing Recyclable Thermosets through C═C/C═N Dynamic Covalent Metathesis Chemistry.
    Zheng J; Feng H; Zhang X; Zheng J; Ng JKW; Wang S; Hadjichristidis N; Li Z
    J Am Chem Soc; 2024 Aug; 146(31):21612-21622. PubMed ID: 39046371
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems.
    Hearon K; Besset CJ; Lonnecker AT; Ware T; Voit WE; Wilson TS; Wooley KL; Maitland DJ
    Macromolecules; 2013 Nov; 46(22):8905-8916. PubMed ID: 25411511
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapidly Reprocessable Cross-Linked Polyhydroxyurethanes Based on Disulfide Exchange.
    Fortman DJ; Snyder RL; Sheppard DT; Dichtel WR
    ACS Macro Lett; 2018 Oct; 7(10):1226-1231. PubMed ID: 35651259
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Harnessing the Chemical Diversity of the Natural Product Magnolol for the Synthesis of Renewable, Degradable Neolignan Thermosets with Tunable Thermomechanical Characteristics and Antioxidant Activity.
    Wacker KT; Weems AC; Lim SM; Khan S; Felder SE; Dove AP; Wooley KL
    Biomacromolecules; 2019 Jan; 20(1):109-117. PubMed ID: 30179461
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fast-Reprocessing, Postadjustable, Self-Healing Covalent Adaptable Networks with Schiff Base and Diels-Alder Adduct.
    Xu X; Ma S; Wang S; Wang B; Feng H; Li P; Liu Y; Yu Z; Zhu J
    Macromol Rapid Commun; 2022 Jul; 43(13):e2100777. PubMed ID: 35018694
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal-catalyzed transesterification for healing and assembling of thermosets.
    Capelot M; Montarnal D; Tournilhac F; Leibler L
    J Am Chem Soc; 2012 May; 134(18):7664-7. PubMed ID: 22537278
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Impact of Vitrimers on the Industry of the Future: Chemistry, Properties and Sustainable Forward-Looking Applications.
    Alabiso W; Schlögl S
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32722554
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigating Physio-Thermo-Mechanical Properties of Polyurethane and Thermoplastics Nanocomposite in Various Applications.
    Allami T; Alamiery A; Nassir MH; Kadhum AH
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372071
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamic Ablative Networks: Shapeable Heat-Shielding Materials.
    Stewart KA; DeLellis DP; Lessard JJ; Rynk JF; Sumerlin BS
    ACS Appl Mater Interfaces; 2023 May; 15(21):25212-25223. PubMed ID: 36888996
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spiroborate-Linked Ionic Covalent Adaptable Networks with Rapid Reprocessability and Closed-Loop Recyclability.
    Chen H; Hu Y; Luo C; Lei Z; Huang S; Wu J; Jin Y; Yu K; Zhang W
    J Am Chem Soc; 2023 Apr; 145(16):9112-9117. PubMed ID: 37058550
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Probing the Solubility of Imine-Based Covalent Adaptable Networks.
    Schoustra SK; Asadi V; Smulders MMJ
    ACS Appl Polym Mater; 2024 Jan; 6(1):79-89. PubMed ID: 38230365
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recycling of Commercially Available Biobased Thermoset Polyurethane Using Covalent Adaptable Network Mechanisms.
    Miravalle E; Viada G; Bonomo M; Barolo C; Bracco P; Zanetti M
    Polymers (Basel); 2024 Aug; 16(15):. PubMed ID: 39125243
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Toward Circular Recycling of Polyurethanes: Depolymerization and Recovery of Isocyanates.
    O'Dea RM; Nandi M; Kroll G; Arnold JR; Korley LTJ; Epps TH
    JACS Au; 2024 Apr; 4(4):1471-1479. PubMed ID: 38665666
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hyperbranched Dynamic Crosslinking Networks Enable Degradable, Reconfigurable, and Multifunctional Epoxy Vitrimer.
    Zhang Y; Yan H; Yu R; Yuan J; Yang K; Liu R; He Y; Feng W; Tian W
    Adv Sci (Weinh); 2024 Jan; 11(2):e2306350. PubMed ID: 37933980
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Covalent Adaptable Networks through Dynamic
    Habets T; Seychal G; Caliari M; Raquez JM; Sardon H; Grignard B; Detrembleur C
    J Am Chem Soc; 2023 Nov; 145(46):25450-25462. PubMed ID: 37942776
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystallizable Aliphatic Chains Enhanced Covalent Adaptable Networks: Fast Reprocessing and Improved Performance.
    Liu Y; Yu Z; Xu X; Wang B; Feng H; Li P; Zhu J; Ma S
    Macromol Rapid Commun; 2022 Oct; 43(20):e2200379. PubMed ID: 35730398
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and Evaluation of a Reprocessable Bismaleimide Thermoset: Enhancing Functionality and Sustainability Compatibility.
    Hoang VK; Ku K; Yeo H
    ACS Macro Lett; 2024 Oct; 13(10):1279-1285. PubMed ID: 39283812
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetical Study, Thermo-Mechanical Characteristics and Recyclability of Epoxidized Camelina Oil Cured with Antagonist Structure (Aliphatic/Aromatic) or Functionality (Acid/Amine) Hardeners.
    Di Mauro C; Genua A; Mija A
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372107
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal Guanidine Metathesis for Covalent Adaptable Networks.
    Melchor Bañales AJ; Larsen MB
    ACS Macro Lett; 2020 Jul; 9(7):937-943. PubMed ID: 35648604
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct Silyl Ether Metathesis for Vitrimers with Exceptional Thermal Stability.
    Tretbar CA; Neal JA; Guan Z
    J Am Chem Soc; 2019 Oct; 141(42):16595-16599. PubMed ID: 31603321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.