These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 39211884)

  • 1. Large Language Models Improve the Identification of Emergency Department Visits for Symptomatic Kidney Stones.
    Bejan CA; Reed AM; Mikula M; Zhang S; Xu Y; Fabbri D; Embí PJ; Hsi RS
    medRxiv; 2024 Aug; ():. PubMed ID: 39211884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Empirical Evaluation of Prompting Strategies for Large Language Models in Zero-Shot Clinical Natural Language Processing: Algorithm Development and Validation Study.
    Sivarajkumar S; Kelley M; Samolyk-Mazzanti A; Visweswaran S; Wang Y
    JMIR Med Inform; 2024 Apr; 12():e55318. PubMed ID: 38587879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving large language models for clinical named entity recognition via prompt engineering.
    Hu Y; Chen Q; Du J; Peng X; Keloth VK; Zuo X; Zhou Y; Li Z; Jiang X; Lu Z; Roberts K; Xu H
    J Am Med Inform Assoc; 2024 Sep; 31(9):1812-1820. PubMed ID: 38281112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation extraction using large language models: a case study on acupuncture point locations.
    Li Y; Peng X; Li J; Zuo X; Peng S; Pei D; Tao C; Xu H; Hong N
    J Am Med Inform Assoc; 2024 Nov; 31(11):2622-2631. PubMed ID: 39208311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning to Make Rare and Complex Diagnoses With Generative AI Assistance: Qualitative Study of Popular Large Language Models.
    Abdullahi T; Singh R; Eickhoff C
    JMIR Med Educ; 2024 Feb; 10():e51391. PubMed ID: 38349725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model tuning or prompt Tuning? a study of large language models for clinical concept and relation extraction.
    Peng C; Yang X; Smith KE; Yu Z; Chen A; Bian J; Wu Y
    J Biomed Inform; 2024 May; 153():104630. PubMed ID: 38548007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Large Language Models to Annotate Complex Cases of Social Determinants of Health in Longitudinal Clinical Records.
    Ralevski A; Taiyab N; Nossal M; Mico L; Piekos SN; Hadlock J
    medRxiv; 2024 Apr; ():. PubMed ID: 38712224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triage Performance Across Large Language Models, ChatGPT, and Untrained Doctors in Emergency Medicine: Comparative Study.
    Masanneck L; Schmidt L; Seifert A; Kölsche T; Huntemann N; Jansen R; Mehsin M; Bernhard M; Meuth SG; Böhm L; Pawlitzki M
    J Med Internet Res; 2024 Jun; 26():e53297. PubMed ID: 38875696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quality of Answers of Generative Large Language Models Versus Peer Users for Interpreting Laboratory Test Results for Lay Patients: Evaluation Study.
    He Z; Bhasuran B; Jin Q; Tian S; Hanna K; Shavor C; Arguello LG; Murray P; Lu Z
    J Med Internet Res; 2024 Apr; 26():e56655. PubMed ID: 38630520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating Large Language Models for Drafting Emergency Department Discharge Summaries.
    Williams CYK; Bains J; Tang T; Patel K; Lucas AN; Chen F; Miao BY; Butte AJ; Kornblith AE
    medRxiv; 2024 Apr; ():. PubMed ID: 38633805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of large language model-based zero-shot inference and task-specific supervised classification of breast cancer pathology reports.
    Sushil M; Zack T; Mandair D; Zheng Z; Wali A; Yu YN; Quan Y; Lituiev D; Butte AJ
    J Am Med Inform Assoc; 2024 Oct; 31(10):2315-2327. PubMed ID: 38900207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating large language models for health-related text classification tasks with public social media data.
    Guo Y; Ovadje A; Al-Garadi MA; Sarker A
    J Am Med Inform Assoc; 2024 Oct; 31(10):2181-2189. PubMed ID: 39121174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sample Size Considerations for Fine-Tuning Large Language Models for Named Entity Recognition Tasks: Methodological Study.
    Majdik ZP; Graham SS; Shiva Edward JC; Rodriguez SN; Karnes MS; Jensen JT; Barbour JB; Rousseau JF
    JMIR AI; 2024 May; 3():e52095. PubMed ID: 38875593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential and pitfalls of using a large language model such as ChatGPT, GPT-4, or LLaMA as a clinical assistant.
    Zhang J; Sun K; Jagadeesh A; Falakaflaki P; Kayayan E; Tao G; Haghighat Ghahfarokhi M; Gupta D; Gupta A; Gupta V; Guo Y
    J Am Med Inform Assoc; 2024 Sep; 31(9):1884-1891. PubMed ID: 39018498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A large language model-based generative natural language processing framework fine-tuned on clinical notes accurately extracts headache frequency from electronic health records.
    Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I
    Headache; 2024 Apr; 64(4):400-409. PubMed ID: 38525734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the accuracy of a state-of-the-art large language model for prediction of admissions from the emergency room.
    Glicksberg BS; Timsina P; Patel D; Sawant A; Vaid A; Raut G; Charney AW; Apakama D; Carr BG; Freeman R; Nadkarni GN; Klang E
    J Am Med Inform Assoc; 2024 Sep; 31(9):1921-1928. PubMed ID: 38771093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Evaluation of LLMs in Clinical Oncology.
    Rydzewski NR; Dinakaran D; Zhao SG; Ruppin E; Turkbey B; Citrin DE; Patel KR
    NEJM AI; 2024 May; 1(5):. PubMed ID: 39131700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale identification of social and behavioral determinants of health from clinical notes: comparison of Latent Semantic Indexing and Generative Pretrained Transformer (GPT) models.
    Roy S; Morrell S; Zhao L; Homayouni R
    BMC Med Inform Decis Mak; 2024 Oct; 24(1):296. PubMed ID: 39390479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Prompt Engineering and Fine-Tuning Strategies in Large Language Models in the Classification of Clinical Notes.
    Zhang X; Talukdar N; Vemulapalli S; Ahn S; Wang J; Meng H; Murtaza SMB; Leshchiner D; Dave AA; Joseph DF; Witteveen-Lane M; Chesla D; Zhou J; Chen B
    medRxiv; 2024 Feb; ():. PubMed ID: 38370673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Prompt Engineering and Fine-Tuning Strategies in Large Language Models in the Classification of Clinical Notes.
    Zhang X; Talukdar N; Vemulapalli S; Ahn S; Wang J; Meng H; Bin Murtaza SM; Leshchiner D; Dave AA; Joseph DF; Witteveen-Lane M; Chesla D; Zhou J; Chen B
    AMIA Jt Summits Transl Sci Proc; 2024; 2024():478-487. PubMed ID: 38827053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.