These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 39212209)

  • 1. The effect of the loop on the thermodynamic and kinetic of single base pair in pseudoknot.
    Zhang S; Wang Z; Qiao J; Yu T; Zhang W
    J Chem Phys; 2024 Aug; 161(8):. PubMed ID: 39212209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nearest neighbor and next nearest neighbor effects on the thermodynamic and kinetic properties of RNA base pair.
    Wang Y; Wang Z; Wang Y; Liu T; Zhang W
    J Chem Phys; 2018 Jan; 148(4):045101. PubMed ID: 29390847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thermodynamics and kinetics of a nucleotide base pair.
    Wang Y; Gong S; Wang Z; Zhang W
    J Chem Phys; 2016 Mar; 144(11):115101. PubMed ID: 27004898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics and kinetics of an A-U RNA base pair under force studied by molecular dynamics simulations.
    Yu T; Liu T; Wang Y; Zhang S; Zhang W
    Phys Rev E; 2023 Feb; 107(2-1):024404. PubMed ID: 36932572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence competition assay measurements of free energy changes for RNA pseudoknots.
    Liu B; Shankar N; Turner DH
    Biochemistry; 2010 Jan; 49(3):623-34. PubMed ID: 19921809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic and kinetic properties of a single base pair in A-DNA and B-DNA.
    Liu T; Yu T; Zhang S; Wang Y; Zhang W
    Phys Rev E; 2021 Apr; 103(4-1):042409. PubMed ID: 34005973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt effect on thermodynamics and kinetics of a single RNA base pair.
    Wang Y; Liu T; Yu T; Tan ZJ; Zhang W
    RNA; 2020 Apr; 26(4):470-480. PubMed ID: 31988191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting loop-helix tertiary structural contacts in RNA pseudoknots.
    Cao S; Giedroc DP; Chen SJ
    RNA; 2010 Mar; 16(3):538-52. PubMed ID: 20100813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting.
    Michiels PJ; Versleijen AA; Verlaan PW; Pleij CW; Hilbers CW; Heus HA
    J Mol Biol; 2001 Jul; 310(5):1109-23. PubMed ID: 11501999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of unfolding mechanisms of mouse mammary tumor virus pseudoknot from a coarse-grained loop-entropy model.
    Tang K; Roca J; Chen R; Ansari A; Liang J
    J Biol Phys; 2022 Jun; 48(2):129-150. PubMed ID: 35445347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting RNA pseudoknot folding thermodynamics.
    Cao S; Chen SJ
    Nucleic Acids Res; 2006; 34(9):2634-52. PubMed ID: 16709732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loop contributions to the folding thermodynamics of DNA straight hairpin loops and pseudoknots.
    Reiling C; Khutsishvili I; Huang K; Marky LA
    J Phys Chem B; 2015 Feb; 119(5):1939-46. PubMed ID: 25584896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
    Vecenie CJ; Morrow CV; Zyra A; Serra MJ
    Biochemistry; 2006 Feb; 45(5):1400-7. PubMed ID: 16445282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the autoregulatory pseudoknot within the gene 32 messenger RNA of bacteriophages T2 and T6: a model for a possible family of structurally related RNA pseudoknots.
    Du Z; Giedroc DP; Hoffman DW
    Biochemistry; 1996 Apr; 35(13):4187-98. PubMed ID: 8672455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the kinetic mechanism of RNA single base pair formation.
    Xu X; Yu T; Chen SJ
    Proc Natl Acad Sci U S A; 2016 Jan; 113(1):116-21. PubMed ID: 26699466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biphasic folding kinetics of RNA pseudoknots and telomerase RNA activity.
    Cao S; Chen SJ
    J Mol Biol; 2007 Mar; 367(3):909-24. PubMed ID: 17276459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops.
    Antao VP; Tinoco I
    Nucleic Acids Res; 1992 Feb; 20(4):819-24. PubMed ID: 1371866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of sequence in altering the unfolding pathway of an RNA pseudoknot: a steered molecular dynamics study.
    Gupta A; Bansal M
    Phys Chem Chem Phys; 2016 Oct; 18(41):28767-28780. PubMed ID: 27722489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic analysis of conserved loop-stem interactions in P1-P2 frameshifting RNA pseudoknots from plant Luteoviridae.
    Nixon PL; Cornish PV; Suram SV; Giedroc DP
    Biochemistry; 2002 Aug; 41(34):10665-74. PubMed ID: 12186552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic Mechanism of RNA Helix-Terminal Basepairing-A Kinetic Minima Network Analysis.
    Wang F; Sun LZ; Cai P; Chen SJ; Xu X
    Biophys J; 2019 Nov; 117(9):1674-1683. PubMed ID: 31590890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.