These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 39213159)
1. Novel Honeycomb Nanoclay Frameworks With Hemostatic and Antibacterial Properties. Cambronel M; Wongkamhaeng K; Blavignac C; Forestier C; Nedelec JM; Denry I J Biomed Mater Res B Appl Biomater; 2024 Sep; 112(9):e35477. PubMed ID: 39213159 [TBL] [Abstract][Full Text] [Related]
2. In situ synthesis of poly (γ- glutamic acid)/alginate/AgNP composite microspheres with antibacterial and hemostatic properties. Tong Z; Yang J; Lin L; Wang R; Cheng B; Chen Y; Tang L; Chen J; Ma X Carbohydr Polym; 2019 Oct; 221():21-28. PubMed ID: 31227161 [TBL] [Abstract][Full Text] [Related]
3. Tranexamic acid-loaded hemostatic nanoclay microsphere frameworks. Denry I; Nédélec JM; Holloway JA J Biomed Mater Res B Appl Biomater; 2022 Feb; 110(2):422-430. PubMed ID: 34288380 [TBL] [Abstract][Full Text] [Related]
4. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. Yuan YG; Peng QL; Gurunathan S Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28272303 [TBL] [Abstract][Full Text] [Related]
6. One step synthesis of antimicrobial peptide protected silver nanoparticles: The core-shell mutual enhancement of antibacterial activity. Gao J; Na H; Zhong R; Yuan M; Guo J; Zhao L; Wang Y; Wang L; Zhang F Colloids Surf B Biointerfaces; 2020 Feb; 186():110704. PubMed ID: 31841775 [TBL] [Abstract][Full Text] [Related]
7. Antibacterial and Hemostatic Thiol-Modified Chitosan-Immobilized AgNPs Composite Sponges. Wu Z; Zhou W; Deng W; Xu C; Cai Y; Wang X ACS Appl Mater Interfaces; 2020 May; 12(18):20307-20320. PubMed ID: 32298570 [TBL] [Abstract][Full Text] [Related]
9. Strong and Nonspecific Synergistic Antibacterial Efficiency of Antibiotics Combined with Silver Nanoparticles at Very Low Concentrations Showing No Cytotoxic Effect. Panáček A; Smékalová M; Kilianová M; Prucek R; Bogdanová K; Večeřová R; Kolář M; Havrdová M; Płaza GA; Chojniak J; Zbořil R; Kvítek L Molecules; 2015 Dec; 21(1):E26. PubMed ID: 26729075 [TBL] [Abstract][Full Text] [Related]
10. Formulation Optimization of Chitosan-Stabilized Silver Nanoparticles Using In Vitro Antimicrobial Assay. Pansara C; Chan WY; Parikh A; Trott DJ; Mehta T; Mishra R; Garg S J Pharm Sci; 2019 Feb; 108(2):1007-1016. PubMed ID: 30244012 [TBL] [Abstract][Full Text] [Related]
11. Silver nanoparticles biosynthesis using mixture of Lactobacillus sp. and Bacillus sp. growth and their antibacterial activity. Al-Asbahi MGSS; Al-Ofiry BA; Saad FAA; Alnehia A; Al-Gunaid MQA Sci Rep; 2024 May; 14(1):10224. PubMed ID: 38702368 [TBL] [Abstract][Full Text] [Related]
12. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Kaviya S; Santhanalakshmi J; Viswanathan B; Muthumary J; Srinivasan K Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug; 79(3):594-8. PubMed ID: 21536485 [TBL] [Abstract][Full Text] [Related]
13. Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Lee SJ; Heo DN; Moon JH; Ko WK; Lee JB; Bae MS; Park SW; Kim JE; Lee DH; Kim EC; Lee CH; Kwon IK Carbohydr Polym; 2014 Oct; 111():530-7. PubMed ID: 25037384 [TBL] [Abstract][Full Text] [Related]
14. Green and ecofriendly synthesis of silver nanoparticles: Characterization, biocompatibility studies and gel formulation for treatment of infections in burns. Jadhav K; Dhamecha D; Bhattacharya D; Patil M J Photochem Photobiol B; 2016 Feb; 155():109-15. PubMed ID: 26774382 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. Shameli K; Bin Ahmad M; Zargar M; Yunus WM; Ibrahim NA; Shabanzadeh P; Moghaddam MG Int J Nanomedicine; 2011; 6():271-84. PubMed ID: 21499424 [TBL] [Abstract][Full Text] [Related]
16. Antimicrobial and physicomechanical natures of silver nanoparticles incorporated into silicone-hydrogel films. Mourad R; Helaly F; Darwesh O; Sawy SE Cont Lens Anterior Eye; 2019 Jun; 42(3):325-333. PubMed ID: 30827719 [TBL] [Abstract][Full Text] [Related]
17. Anti-Cancer and Anti-Bacterial Effects of Yaghoubi H; Izadpanah A; Nedaei S; Akbari H; Mikaeiliagah E; Mostany R; Chandrasekar B; Alt E; Izadpanah R Comb Chem High Throughput Screen; 2021; 24(10):1714-1726. PubMed ID: 33208063 [TBL] [Abstract][Full Text] [Related]
18. Trimethyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii. Chang TY; Chen CC; Cheng KM; Chin CY; Chen YH; Chen XA; Sun JR; Young JJ; Chiueh TS Colloids Surf B Biointerfaces; 2017 Jul; 155():61-70. PubMed ID: 28411476 [TBL] [Abstract][Full Text] [Related]
19. Silver Nanoparticles and Their Antibacterial Applications. Bruna T; Maldonado-Bravo F; Jara P; Caro N Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281254 [TBL] [Abstract][Full Text] [Related]
20. Radiation-induced synthesis of tween 80 stabilized silver nanoparticles for antibacterial applications. Bekhit M; Abu El-Naga MN; Sokary R; Fahim RA; El-Sawy NM J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(10):1210-1217. PubMed ID: 32614255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]