These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 39213160)
1. Effect of sequential delivery of 1- and 2-MHz bipolar microneedling radiofrequency energy on thermal tissue reactions in a minipig model. Cho SB; Kang SY; Lee YJ; Choi M; Kim B; Ahn JC Skin Res Technol; 2024 Sep; 30(9):e13898. PubMed ID: 39213160 [TBL] [Abstract][Full Text] [Related]
2. Effects of Parallel Contact Cooling on Pulsed-Type, Bipolar Radiofrequency-Induced Tissue Reactions in an in vivo Porcine Model. Cho SB; Lee YJ; Kang SY; Choi M; Kim B; Ahn JC Clin Cosmet Investig Dermatol; 2024; 17():125-135. PubMed ID: 38259431 [TBL] [Abstract][Full Text] [Related]
3. Immediate and Late Effects of Pulse Widths and Cycles on Bipolar, Gated Radiofrequency-Induced Tissue Reactions in in vivo Rat Skin. Kim HK; Kim HJ; Kim JY; Ban MJ; Son J; Hwang Y; Cho SB Clin Cosmet Investig Dermatol; 2023; 16():721-729. PubMed ID: 37008192 [TBL] [Abstract][Full Text] [Related]
4. Effect of Pulse Widths and Cycles on Invasive, Bipolar, and Gated Radiofrequency-Induced Thermal Reactions in ex vivo Bovine Liver Tissue. Choi M; Lee HS; Cho SB Clin Cosmet Investig Dermatol; 2023; 16():87-97. PubMed ID: 36660189 [TBL] [Abstract][Full Text] [Related]
5. Interactive thermal tissue reactions of 7-MHz intense focused ultrasound and 1-MHz and 6-MHz radiofrequency on cadaveric skin. Kim H; Ahn KJ; Lee S; Park H; Cho SB Skin Res Technol; 2019 Mar; 25(2):171-178. PubMed ID: 30320473 [TBL] [Abstract][Full Text] [Related]
6. In vivo histological evaluation of non-insulated microneedle radiofrequency applicator with novel fractionated pulse mode. Harth Y; Frank I J Drugs Dermatol; 2013 Dec; 12(12):1430-3. PubMed ID: 24301245 [TBL] [Abstract][Full Text] [Related]
7. Histometric analysis of skin-radiofrequency interaction using a fractionated microneedle delivery system. Zheng Z; Goo B; Kim DY; Kang JS; Cho SB Dermatol Surg; 2014 Feb; 40(2):134-41. PubMed ID: 24373135 [TBL] [Abstract][Full Text] [Related]
8. An evaluation of electrocoagulation and thermal diffusion following radiofrequency microneedling using an in vivo porcine skin model. Wootten S; Zawacki ZE; Rheins L; Meschter C; Draelos ZD J Cosmet Dermatol; 2021 Apr; 20(4):1133-1139. PubMed ID: 32846042 [TBL] [Abstract][Full Text] [Related]
9. Histological evaluation of monopolar and bipolar radiofrequency microneedling treatment in a porcine model. Wang H; Hamblin MR; Zhang Y; Xu Y; Wen X Lasers Surg Med; 2024 Mar; 56(3):288-297. PubMed ID: 38334177 [TBL] [Abstract][Full Text] [Related]
10. Pilot clinical study of a novel minimally invasive bipolar microneedle radiofrequency device. Hantash BM; Renton B; Berkowitz RL; Stridde BC; Newman J Lasers Surg Med; 2009 Feb; 41(2):87-95. PubMed ID: 19226570 [TBL] [Abstract][Full Text] [Related]
11. The Novel Use of Bipolar Radiofrequency Microneedling in the Treatment of Lichen Sclerosus. Blusewicz TA; Coley KP; Moore RD; Miklos JR Surg Technol Int; 2023 Dec; 43():90-95. PubMed ID: 38038180 [TBL] [Abstract][Full Text] [Related]
12. Use of Optical Coherence Tomography to Assess Properties of Cutaneous Defects Following Radiofrequency Microneedling and Laser Treatment. Seiger K; Driscoll W; Messele F; Golbari NM; Fan X; Holmes J; Zachary CB Lasers Surg Med; 2024 Nov; 56(9):762-769. PubMed ID: 39308122 [TBL] [Abstract][Full Text] [Related]
13. In vivo skin reactions from pulsed-type, bipolar, alternating current radiofrequency treatment using invasive noninsulated electrodes. Cho SB; Na J; Zheng Z; Lim JM; Kang JS; Lee JH; Lee SE Skin Res Technol; 2018 May; 24(2):318-325. PubMed ID: 29368439 [TBL] [Abstract][Full Text] [Related]
14. Microplasma radio frequency technology using stationary tips on pig skin: A histological study. Feng J; Ning J; Zhang L; Li X; Huang L J Cosmet Dermatol; 2024 Jul; 23(7):2420-2426. PubMed ID: 38532267 [TBL] [Abstract][Full Text] [Related]
15. Radiofrequency Microneedling: Overview of Technology, Advantages, Differences in Devices, Studies, and Indications. Weiner SF Facial Plast Surg Clin North Am; 2019 Aug; 27(3):291-303. PubMed ID: 31280844 [TBL] [Abstract][Full Text] [Related]
16. Effect of the Combination of Different Electrode Spacings and Power on Bipolar Radiofrequency Fat Dissolution: A Computational and Experimental Study. Zang L; Zhou Y; Kang J; Song C Lasers Surg Med; 2020 Dec; 52(10):1020-1031. PubMed ID: 32342532 [TBL] [Abstract][Full Text] [Related]
17. Microneedle fractional radiofrequency-induced micropores evaluated by in vivo reflectance confocal microscopy, optical coherence tomography, and histology. Hansen FS; Wenande E; Haedersdal M; Fuchs CSK Skin Res Technol; 2019 Jul; 25(4):482-488. PubMed ID: 30659657 [TBL] [Abstract][Full Text] [Related]
18. Prospective, preclinical comparison of the performance between radiofrequency microneedling and microneedling alone in reversing photoaged skin. Hong JY; Kwon TR; Kim JH; Lee BC; Kim BJ J Cosmet Dermatol; 2020 May; 19(5):1105-1109. PubMed ID: 31490628 [TBL] [Abstract][Full Text] [Related]
19. Thermal effects of percutaneous application of plasma/radiofrequency energy on porcine dermis and fibroseptal network. Ruff PG J Cosmet Dermatol; 2021 Jul; 20(7):2125-2131. PubMed ID: 33197275 [TBL] [Abstract][Full Text] [Related]
20. Long-term three-dimensional volumetric assessment of skin tightening using a sharply tapered non-insulated microneedle radiofrequency applicator with novel fractionated pulse mode in asians. Tanaka Y Lasers Surg Med; 2015 Oct; 47(8):626-33. PubMed ID: 26272454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]