These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 39213461)
1. Temperature and time of host-seeking activity impact the efficacy of chemical control interventions targeting the West Nile virus vector, Culex tarsalis. Kalmouni J; Will JB; Townsend J; Paaijmans KP PLoS Negl Trop Dis; 2024 Aug; 18(8):e0012460. PubMed ID: 39213461 [TBL] [Abstract][Full Text] [Related]
2. Spatio-temporal impacts of aerial adulticide applications on populations of West Nile virus vector mosquitoes. Holcomb KM; Reiner RC; Barker CM Parasit Vectors; 2021 Feb; 14(1):120. PubMed ID: 33627165 [TBL] [Abstract][Full Text] [Related]
3. Impact of aerial spraying of pyrethrin insecticide on Culex pipiens and Culex tarsalis (Diptera: Culicidae) abundance and West Nile virus infection rates in an urban/suburban area of Sacramento County, California. Elnaiem DE; Kelley K; Wright S; Laffey R; Yoshimura G; Reed M; Goodman G; Thiemann T; Reimer L; Reisen WK; Brown D J Med Entomol; 2008 Jul; 45(4):751-7. PubMed ID: 18714879 [TBL] [Abstract][Full Text] [Related]
4. TIME OF HOST-SEEKING OF MOSQUITO VECTOR SPECIES ON THE TEMPE CAMPUS OF ARIZONA STATE UNIVERSITY. Kalmouni J; Will JB; Townsend J; Paaijmans KP J Am Mosq Control Assoc; 2024 Sep; ():. PubMed ID: 39237114 [TBL] [Abstract][Full Text] [Related]
5. Permethrin Susceptibility for the Vector Vincent GP; Davis JK; Wimberly MC; Carlson CD; Hildreth MB Biomed Res Int; 2018; 2018():2014764. PubMed ID: 30112366 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a novel West Nile virus transmission control strategy that targets Culex tarsalis with endectocide-containing blood meals. Nguyen C; Gray M; Burton TA; Foy SL; Foster JR; Gendernalik AL; Rückert C; Alout H; Young MC; Boze B; Ebel GD; Clapsaddle B; Foy BD PLoS Negl Trop Dis; 2019 Mar; 13(3):e0007210. PubMed ID: 30845250 [TBL] [Abstract][Full Text] [Related]
7. West Nile virus in host-seeking mosquitoes within a residential neighborhood in Grand Forks, North Dakota. Bell JA; Mickelson NJ; Vaughan JA Vector Borne Zoonotic Dis; 2005; 5(4):373-82. PubMed ID: 16417433 [TBL] [Abstract][Full Text] [Related]
8. Spatiotemporal distribution of vector mosquito species and areas at risk for arbovirus transmission in Maricopa County, Arizona. Wilke ABB; Damian D; Litvinova M; Byrne T; Zardini A; Poletti P; Merler S; Mutebi JP; Townsend J; Ajelli M Acta Trop; 2023 Apr; 240():106833. PubMed ID: 36736524 [TBL] [Abstract][Full Text] [Related]
9. Modeling Culex tarsalis abundance on the northern Colorado front range using a landscape-level approach. Schurich JA; Kumar S; Eisen L; Moore CG J Am Mosq Control Assoc; 2014 Mar; 30(1):7-20. PubMed ID: 24772672 [TBL] [Abstract][Full Text] [Related]
10. Mosquitoes and West Nile virus along a river corridor from prairie to montane habitats in eastern Colorado. Barker CM; Bolling BG; Black WC; Moore CG; Eisen L J Vector Ecol; 2009 Dec; 34(2):276-93. PubMed ID: 20836831 [TBL] [Abstract][Full Text] [Related]
11. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23°C and 26°C. Shocket MS; Verwillow AB; Numazu MG; Slamani H; Cohen JM; El Moustaid F; Rohr J; Johnson LR; Mordecai EA Elife; 2020 Sep; 9():. PubMed ID: 32930091 [TBL] [Abstract][Full Text] [Related]
12. Human biting mosquitoes and implications for West Nile virus transmission. Uelmen JA; Lamcyzk B; Irwin P; Bartlett D; Stone C; Mackay A; Arsenault-Benoit A; Ryan SJ; Mutebi JP; Hamer GL; Fritz M; Smith RL Parasit Vectors; 2023 Jan; 16(1):2. PubMed ID: 36593496 [TBL] [Abstract][Full Text] [Related]
13. The Effect of Fluctuating Incubation Temperatures on West Nile Virus Infection in McGregor BL; Kenney JL; Connelly CR Viruses; 2021 Sep; 13(9):. PubMed ID: 34578403 [TBL] [Abstract][Full Text] [Related]
14. Broadscale spatial synchrony in a West Nile virus mosquito vector across multiple timescales. Campbell LP; Bauer AM; Tavares Y; Guralnick RP; Reuman D Sci Rep; 2024 May; 14(1):12479. PubMed ID: 38816487 [TBL] [Abstract][Full Text] [Related]
15. Insecticide resistance and target site mutations (G119S ace-1 and L1014F kdr) of Culex pipiens in Morocco. Tmimi FZ; Faraj C; Bkhache M; Mounaji K; Failloux AB; Sarih M Parasit Vectors; 2018 Jan; 11(1):51. PubMed ID: 29357900 [TBL] [Abstract][Full Text] [Related]
16. Mosquito population structure, pathogen surveillance and insecticide resistance monitoring in urban regions of Crete, Greece. Fotakis EA; Mavridis K; Kampouraki A; Balaska S; Tanti F; Vlachos G; Gewehr S; Mourelatos S; Papadakis A; Kavalou M; Nikolakakis D; Moisaki M; Kampanis N; Loumpounis M; Vontas J PLoS Negl Trop Dis; 2022 Feb; 16(2):e0010186. PubMed ID: 35176020 [TBL] [Abstract][Full Text] [Related]
17. Impacts of ground ultra-low volume adulticide applications on Culex pipiens and Culex restuans (Diptera: Culicidae) abundance, age structure, and West Nile virus infection in Cook County, Illinois. Lopez K; Susong K; Irwin P; Paskewitz S; Bartholomay L J Med Entomol; 2024 Jul; 61(4):1043-1053. PubMed ID: 38527268 [TBL] [Abstract][Full Text] [Related]
18. Modeling dynamics of culex pipiens complex populations and assessing abatement strategies for West Nile Virus. Pawelek KA; Niehaus P; Salmeron C; Hager EJ; Hunt GJ PLoS One; 2014; 9(9):e108452. PubMed ID: 25268229 [TBL] [Abstract][Full Text] [Related]
19. The potential role of the Asian bush mosquito Aedes japonicus as spillover vector for West Nile virus in the Netherlands. Linthout C; Martins AD; de Wit M; Delecroix C; Abbo SR; Pijlman GP; Koenraadt CJM Parasit Vectors; 2024 Jun; 17(1):262. PubMed ID: 38886805 [TBL] [Abstract][Full Text] [Related]
20. Modeling monthly variation of Culex tarsalis (Diptera: Culicidae) abundance and West Nile Virus infection rate in the Canadian Prairies. Chen CC; Epp T; Jenkins E; Waldner C; Curry PS; Soos C Int J Environ Res Public Health; 2013 Jul; 10(7):3033-51. PubMed ID: 23880728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]