These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 39213565)

  • 1. Detecting Measurement-Induced Entanglement Transitions with Unitary Mirror Circuits.
    Yanay Y; Swingle B; Tahan C
    Phys Rev Lett; 2024 Aug; 133(7):070601. PubMed ID: 39213565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological Order and Criticality in (2+1)D Monitored Random Quantum Circuits.
    Lavasani A; Alavirad Y; Barkeshli M
    Phys Rev Lett; 2021 Dec; 127(23):235701. PubMed ID: 34936777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling Entanglement at Absorbing State Phase Transitions in Random Circuits.
    Sierant P; Turkeshi X
    Phys Rev Lett; 2023 Mar; 130(12):120402. PubMed ID: 37027858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume-Law to Area-Law Entanglement Transition in a Nonunitary Periodic Gaussian Circuit.
    Granet E; Zhang C; Dreyer H
    Phys Rev Lett; 2023 Jun; 130(23):230401. PubMed ID: 37354425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite-Time Teleportation Phase Transition in Random Quantum Circuits.
    Bao Y; Block M; Altman E
    Phys Rev Lett; 2024 Jan; 132(3):030401. PubMed ID: 38307063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement-Induced Power-Law Negativity in an Open Monitored Quantum Circuit.
    Weinstein Z; Bao Y; Altman E
    Phys Rev Lett; 2022 Aug; 129(8):080501. PubMed ID: 36053700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Error Correction in Scrambling Dynamics and Measurement-Induced Phase Transition.
    Choi S; Bao Y; Qi XL; Altman E
    Phys Rev Lett; 2020 Jul; 125(3):030505. PubMed ID: 32745425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient synthesis of universal repeat-until-success quantum circuits.
    Bocharov A; Roetteler M; Svore KM
    Phys Rev Lett; 2015 Feb; 114(8):080502. PubMed ID: 25768742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entanglement Growth and Minimal Membranes in (d+1) Random Unitary Circuits.
    Sierant P; Schirò M; Lewenstein M; Turkeshi X
    Phys Rev Lett; 2023 Dec; 131(23):230403. PubMed ID: 38134798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and measurement of three-qubit entanglement in a superconducting circuit.
    Dicarlo L; Reed MD; Sun L; Johnson BR; Chow JM; Gambetta JM; Frunzio L; Girvin SM; Devoret MH; Schoelkopf RJ
    Nature; 2010 Sep; 467(7315):574-8. PubMed ID: 20882013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross Entropy Benchmark for Measurement-Induced Phase Transitions.
    Li Y; Zou Y; Glorioso P; Altman E; Fisher MPA
    Phys Rev Lett; 2023 Jun; 130(22):220404. PubMed ID: 37327428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genuine 12-Qubit Entanglement on a Superconducting Quantum Processor.
    Gong M; Chen MC; Zheng Y; Wang S; Zha C; Deng H; Yan Z; Rong H; Wu Y; Li S; Chen F; Zhao Y; Liang F; Lin J; Xu Y; Guo C; Sun L; Castellano AD; Wang H; Peng C; Lu CY; Zhu X; Pan JW
    Phys Rev Lett; 2019 Mar; 122(11):110501. PubMed ID: 30951346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer.
    Foss-Feig M; Ragole S; Potter A; Dreiling J; Figgatt C; Gaebler J; Hall A; Moses S; Pino J; Spaun B; Neyenhuis B; Hayes D
    Phys Rev Lett; 2022 Apr; 128(15):150504. PubMed ID: 35499881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of entanglement transition of pseudo-random mixed states.
    Liu T; Liu S; Li H; Li H; Huang K; Xiang Z; Song X; Xu K; Zheng D; Fan H
    Nat Commun; 2023 Apr; 14(1):1971. PubMed ID: 37031244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ansatz for the quantum phase transition in a dissipative two-qubit system.
    Zheng H; Lü Z; Zhao Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062115. PubMed ID: 26172669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entanglement of Three-Qubit Random Pure States.
    Enríquez M; Delgado F; Życzkowski K
    Entropy (Basel); 2018 Sep; 20(10):. PubMed ID: 33265834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits.
    Kliuchnikov V; Maslov D; Mosca M
    Phys Rev Lett; 2013 May; 110(19):190502. PubMed ID: 23705696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field Theory of Charge Sharpening in Symmetric Monitored Quantum Circuits.
    Barratt F; Agrawal U; Gopalakrishnan S; Huse DA; Vasseur R; Potter AC
    Phys Rev Lett; 2022 Sep; 129(12):120604. PubMed ID: 36179163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of genuine entanglement up to 51 superconducting qubits.
    Cao S; Wu B; Chen F; Gong M; Wu Y; Ye Y; Zha C; Qian H; Ying C; Guo S; Zhu Q; Huang HL; Zhao Y; Li S; Wang S; Yu J; Fan D; Wu D; Su H; Deng H; Rong H; Li Y; Zhang K; Chung TH; Liang F; Lin J; Xu Y; Sun L; Guo C; Li N; Huo YH; Peng CZ; Lu CY; Yuan X; Zhu X; Pan JW
    Nature; 2023 Jul; 619(7971):738-742. PubMed ID: 37438533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates.
    Bravyi S; Gosset D
    Phys Rev Lett; 2016 Jun; 116(25):250501. PubMed ID: 27391708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.