These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 39213703)
1. Structural insights into BirA from Haemophilus influenzae, a bifunctional protein as a biotin protein ligase and a transcriptional repressor. Jeong KH; Son SB; Ko JH; Lee M; Lee JY Biochem Biophys Res Commun; 2024 Nov; 733():150601. PubMed ID: 39213703 [TBL] [Abstract][Full Text] [Related]
2. Co-repressor induced order and biotin repressor dimerization: a case for divergent followed by convergent evolution. Wood ZA; Weaver LH; Brown PH; Beckett D; Matthews BW J Mol Biol; 2006 Mar; 357(2):509-23. PubMed ID: 16438984 [TBL] [Abstract][Full Text] [Related]
3. A conserved regulatory mechanism in bifunctional biotin protein ligases. Wang J; Beckett D Protein Sci; 2017 Aug; 26(8):1564-1573. PubMed ID: 28466579 [TBL] [Abstract][Full Text] [Related]
4. Evidence for interdomain interaction in the Escherichia coli repressor of biotin biosynthesis from studies of an N-terminal domain deletion mutant. Xu Y; Beckett D Biochemistry; 1996 Feb; 35(6):1783-92. PubMed ID: 8639659 [TBL] [Abstract][Full Text] [Related]
5. The C-terminal domain of biotin protein ligase from E. coli is required for catalytic activity. Chapman-Smith A; Mulhern TD; Whelan F; Cronan JE; Wallace JC Protein Sci; 2001 Dec; 10(12):2608-17. PubMed ID: 11714929 [TBL] [Abstract][Full Text] [Related]
6. Structural ordering of disordered ligand-binding loops of biotin protein ligase into active conformations as a consequence of dehydration. Gupta V; Gupta RK; Khare G; Salunke DM; Surolia A; Tyagi AK PLoS One; 2010 Feb; 5(2):e9222. PubMed ID: 20169168 [TBL] [Abstract][Full Text] [Related]
7. Diversity in functional organization of class I and class II biotin protein ligase. Purushothaman S; Annamalai K; Tyagi AK; Surolia A PLoS One; 2011 Mar; 6(3):e16850. PubMed ID: 21390227 [TBL] [Abstract][Full Text] [Related]
8. Ligand-linked structural changes in the Escherichia coli biotin repressor: the significance of surface loops for binding and allostery. Streaker ED; Beckett D J Mol Biol; 1999 Sep; 292(3):619-32. PubMed ID: 10497026 [TBL] [Abstract][Full Text] [Related]
9. Structural characterization of Staphylococcus aureus biotin protein ligase and interaction partners: an antibiotic target. Pendini NR; Yap MY; Traore DA; Polyak SW; Cowieson NP; Abell A; Booker GW; Wallace JC; Wilce JA; Wilce MC Protein Sci; 2013 Jun; 22(6):762-73. PubMed ID: 23559560 [TBL] [Abstract][Full Text] [Related]
10. The wing of a winged helix-turn-helix transcription factor organizes the active site of BirA, a bifunctional repressor/ligase. Chakravartty V; Cronan JE J Biol Chem; 2013 Dec; 288(50):36029-39. PubMed ID: 24189073 [TBL] [Abstract][Full Text] [Related]
11. Evidence for distinct ligand-bound conformational states of the multifunctional Escherichia coli repressor of biotin biosynthesis. Xu Y; Nenortas E; Beckett D Biochemistry; 1995 Dec; 34(51):16624-31. PubMed ID: 8527435 [TBL] [Abstract][Full Text] [Related]
12. Energetic methods to study bifunctional biotin operon repressor. Beckett D Methods Enzymol; 1998; 295():424-50. PubMed ID: 9750231 [TBL] [Abstract][Full Text] [Related]
13. Structural impact of human and Escherichia coli biotin carboxyl carrier proteins on biotin attachment. Healy S; McDonald MK; Wu X; Yue WW; Kochan G; Oppermann U; Gravel RA Biochemistry; 2010 Jun; 49(22):4687-94. PubMed ID: 20443544 [TBL] [Abstract][Full Text] [Related]
14. The Staphylococcus aureus group II biotin protein ligase BirA is an effective regulator of biotin operon transcription and requires the DNA binding domain for full enzymatic activity. Henke SK; Cronan JE Mol Microbiol; 2016 Nov; 102(3):417-429. PubMed ID: 27445042 [TBL] [Abstract][Full Text] [Related]
15. Crystal structures of biotin protein ligase from Pyrococcus horikoshii OT3 and its complexes: structural basis of biotin activation. Bagautdinov B; Kuroishi C; Sugahara M; Kunishima N J Mol Biol; 2005 Oct; 353(2):322-33. PubMed ID: 16169557 [TBL] [Abstract][Full Text] [Related]
16. Shen J; Wu W; Wang K; Wu J; Liu B; Li C; Gong Z; Hong X; Fang H; Zhang X; Xu X mBio; 2024 May; 15(5):e0341423. PubMed ID: 38572988 [TBL] [Abstract][Full Text] [Related]
17. Functional definition of BirA suggests a biotin utilization pathway in the zoonotic pathogen Streptococcus suis. Ye H; Cai M; Zhang H; Li Z; Wen R; Feng Y Sci Rep; 2016 May; 6():26479. PubMed ID: 27217336 [TBL] [Abstract][Full Text] [Related]
18. Competing protein:protein interactions are proposed to control the biological switch of the E coli biotin repressor. Weaver LH; Kwon K; Beckett D; Matthews BW Protein Sci; 2001 Dec; 10(12):2618-22. PubMed ID: 11714930 [TBL] [Abstract][Full Text] [Related]
19. Active site conformational changes upon reaction intermediate biotinyl-5'-AMP binding in biotin protein ligase from Mycobacterium tuberculosis. Ma Q; Akhter Y; Wilmanns M; Ehebauer MT Protein Sci; 2014 Jul; 23(7):932-9. PubMed ID: 24723382 [TBL] [Abstract][Full Text] [Related]
20. Nucleation of an allosteric response via ligand-induced loop folding. Naganathan S; Beckett D J Mol Biol; 2007 Oct; 373(1):96-111. PubMed ID: 17765263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]