These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39213898)

  • 1. Metadata information and fundus image fusion neural network for hyperuricemia classification in diabetes.
    Wei J; Xu Y; Wang H; Niu T; Jiang Y; Shen Y; Su L; Dou T; Peng Y; Bi L; Xu X; Wang Y; Liu K
    Comput Methods Programs Biomed; 2024 Nov; 256():108382. PubMed ID: 39213898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of cardiovascular risk factors from retinal fundus photographs: Validation of a deep learning algorithm in a prospective non-interventional study in Kenya.
    White T; Selvarajah V; Wolfhagen-Sand F; Svangård N; Mohankumar G; Fenici P; Rough K; Onyango N; Lyons K; Mack C; Nduba V; Noorali Saleh M; Abayo I; Siddiqui A; Majdanska-Strzalka M; Kaszubska K; Hegelund-Myrback T; Esterline R; Manzur A; Parker VER
    Diabetes Obes Metab; 2024 Jul; 26(7):2722-2731. PubMed ID: 38618987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning algorithms to detect diabetic kidney disease from retinal photographs in multiethnic populations with diabetes.
    Betzler BK; Chee EYL; He F; Lim CC; Ho J; Hamzah H; Tan NC; Liew G; McKay GJ; Hogg RE; Young IS; Cheng CY; Lim SC; Lee AY; Wong TY; Lee ML; Hsu W; Tan GSW; Sabanayagam C
    J Am Med Inform Assoc; 2023 Nov; 30(12):1904-1914. PubMed ID: 37659103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Hypertension, Diabetes, and Smoking on Age and Sex Prediction from Retinal Fundus Images.
    Kim YD; Noh KJ; Byun SJ; Lee S; Kim T; Sunwoo L; Lee KJ; Kang SH; Park KH; Park SJ
    Sci Rep; 2020 Mar; 10(1):4623. PubMed ID: 32165702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations.
    Sabanayagam C; Xu D; Ting DSW; Nusinovici S; Banu R; Hamzah H; Lim C; Tham YC; Cheung CY; Tai ES; Wang YX; Jonas JB; Cheng CY; Lee ML; Hsu W; Wong TY
    Lancet Digit Health; 2020 Jun; 2(6):e295-e302. PubMed ID: 33328123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images.
    Zhang K; Liu X; Xu J; Yuan J; Cai W; Chen T; Wang K; Gao Y; Nie S; Xu X; Qin X; Su Y; Xu W; Olvera A; Xue K; Li Z; Zhang M; Zeng X; Zhang CL; Li O; Zhang EE; Zhu J; Xu Y; Kermany D; Zhou K; Pan Y; Li S; Lai IF; Chi Y; Wang C; Pei M; Zang G; Zhang Q; Lau J; Lam D; Zou X; Wumaier A; Wang J; Shen Y; Hou FF; Zhang P; Xu T; Zhou Y; Wang G
    Nat Biomed Eng; 2021 Jun; 5(6):533-545. PubMed ID: 34131321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.
    Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ
    Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning Models for the Screening of Cognitive Impairment Using Multimodal Fundus Images.
    Shi XH; Ju L; Dong L; Zhang RH; Shao L; Yan YN; Wang YX; Fu XF; Chen YZ; Ge ZY; Wei WB
    Ophthalmol Retina; 2024 Jul; 8(7):666-677. PubMed ID: 38280426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age and sex affect deep learning prediction of cardiometabolic risk factors from retinal images.
    Gerrits N; Elen B; Craenendonck TV; Triantafyllidou D; Petropoulos IN; Malik RA; De Boever P
    Sci Rep; 2020 Jun; 10(1):9432. PubMed ID: 32523046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning model for screening type 2 diabetes from retinal photographs.
    Yun JS; Kim J; Jung SH; Cha SA; Ko SH; Ahn YB; Won HH; Sohn KA; Kim D
    Nutr Metab Cardiovasc Dis; 2022 May; 32(5):1218-1226. PubMed ID: 35197214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms.
    Rim TH; Lee G; Kim Y; Tham YC; Lee CJ; Baik SJ; Kim YA; Yu M; Deshmukh M; Lee BK; Park S; Kim HC; Sabayanagam C; Ting DSW; Wang YX; Jonas JB; Kim SS; Wong TY; Cheng CY
    Lancet Digit Health; 2020 Oct; 2(10):e526-e536. PubMed ID: 33328047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of anaemia from retinal fundus images via deep learning.
    Mitani A; Huang A; Venugopalan S; Corrado GS; Peng L; Webster DR; Hammel N; Liu Y; Varadarajan AV
    Nat Biomed Eng; 2020 Jan; 4(1):18-27. PubMed ID: 31873211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gender Prediction for a Multiethnic Population via Deep Learning Across Different Retinal Fundus Photograph Fields: Retrospective Cross-sectional Study.
    Betzler BK; Yang HHS; Thakur S; Yu M; Quek TC; Soh ZD; Lee G; Tham YC; Wong TY; Rim TH; Cheng CY
    JMIR Med Inform; 2021 Aug; 9(8):e25165. PubMed ID: 34402800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning.
    Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs.
    Li F; Yan L; Wang Y; Shi J; Chen H; Zhang X; Jiang M; Wu Z; Zhou K
    Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):851-867. PubMed ID: 31989285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Deep Learning Approach for Automated Detection of Geographic Atrophy from Color Fundus Photographs.
    Keenan TD; Dharssi S; Peng Y; Chen Q; Agrón E; Wong WT; Lu Z; Chew EY
    Ophthalmology; 2019 Nov; 126(11):1533-1540. PubMed ID: 31358385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.
    Li Z; He Y; Keel S; Meng W; Chang RT; He M
    Ophthalmology; 2018 Aug; 125(8):1199-1206. PubMed ID: 29506863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs.
    Liu H; Li L; Wormstone IM; Qiao C; Zhang C; Liu P; Li S; Wang H; Mou D; Pang R; Yang D; Zangwill LM; Moghimi S; Hou H; Bowd C; Jiang L; Chen Y; Hu M; Xu Y; Kang H; Ji X; Chang R; Tham C; Cheung C; Ting DSW; Wong TY; Wang Z; Weinreb RN; Xu M; Wang N
    JAMA Ophthalmol; 2019 Dec; 137(12):1353-1360. PubMed ID: 31513266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.
    Liu Y; Zhang M; Zhong Z; Zeng X
    Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.