These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39214004)
41. The influence of doping amount on the catalytic oxidation of formaldehyde by Mn-CeO Song W; Chen L; Wan L; Jing M; Li Z J Hazard Mater; 2022 Mar; 425():127985. PubMed ID: 34896714 [TBL] [Abstract][Full Text] [Related]
42. Promotion effect of Pd on TiO2 for visible light photocatalytic degradation of gaseous formaldehyde. Wu RJ; Liu YS; Lai HF; Wang JH; Chavali M J Nanosci Nanotechnol; 2014 Sep; 14(9):6792-9. PubMed ID: 25924333 [TBL] [Abstract][Full Text] [Related]
43. Removal of formaldehyde over Mn(x)Ce(1)-(x)O(2) catalysts: thermal catalytic oxidation versus ozone catalytic oxidation. Li JW; Pan KL; Yu SJ; Yan SY; Chang MB J Environ Sci (China); 2014 Dec; 26(12):2546-53. PubMed ID: 25499503 [TBL] [Abstract][Full Text] [Related]
44. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites. Green IX; Tang W; Neurock M; Yates JT Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536 [TBL] [Abstract][Full Text] [Related]
45. Efficient activation of Pd/CeO Li K; Ji J; Huang H; He M Chemosphere; 2020 May; 246():125762. PubMed ID: 31896012 [TBL] [Abstract][Full Text] [Related]
46. Pd Nanoclusters-Sensitized MIL-125/TiO Zhao J; Wang H; He ZK; Zhang W; Du Y; Li X; Wang S; Zhao J; Song YY; Gao Z ACS Sens; 2024 Aug; 9(8):4166-4175. PubMed ID: 39037034 [TBL] [Abstract][Full Text] [Related]
47. Regulating the Pt-MnO Xie J; Wang S; Zhao K; Wu M; Wang F Inorg Chem; 2023 Jan; 62(2):904-915. PubMed ID: 36598540 [TBL] [Abstract][Full Text] [Related]
48. Effect of Support on the Activity of Ag-based Catalysts for Formaldehyde Oxidation. Zhang J; Li Y; Zhang Y; Chen M; Wang L; Zhang C; He H Sci Rep; 2015 Aug; 5():12950. PubMed ID: 26263506 [TBL] [Abstract][Full Text] [Related]
49. Sodium Rivals Silver as Single-Atom Active Centers for Catalyzing Abatement of Formaldehyde. Chen Y; Gao J; Huang Z; Zhou M; Chen J; Li C; Ma Z; Chen J; Tang X Environ Sci Technol; 2017 Jun; 51(12):7084-7090. PubMed ID: 28537706 [TBL] [Abstract][Full Text] [Related]
50. Preparation of birnessite-supported pt nanoparticles and their application in catalytic oxidation of formaldehyde. Liu L; Tian H; He J; Wang D; Yang Q J Environ Sci (China); 2012; 24(6):1117-24. PubMed ID: 23505880 [TBL] [Abstract][Full Text] [Related]
51. Elimination of formaldehyde over Cu-Al2O3 catalyst at room temperature. Zhang CB; Shi XY; Gao HW; He H J Environ Sci (China); 2005; 17(3):429-32. PubMed ID: 16083117 [TBL] [Abstract][Full Text] [Related]
52. Sepiolite-Supported Manganese Oxide as an Efficient Catalyst for Formaldehyde Oxidation: Performance and Mechanism. Li D; Liu H; He X; Yao Y; Liu H; Chen J; Deng B; Lan X Molecules; 2024 Jun; 29(12):. PubMed ID: 38930891 [TBL] [Abstract][Full Text] [Related]
53. Insights into the roles of superficial lattice oxygen in formaldehyde oxidation on birnessite. Ma Z; Li Y; Sun K; Ahmed J; Tian W; Xu J Nanoscale; 2024 Jul; 16(26):12541-12549. PubMed ID: 38884124 [TBL] [Abstract][Full Text] [Related]
54. CO Oxidation over Pd Catalyst Supported on Porous TiO Samadi P; Binczarski MJ; Pawlaczyk A; Rogowski J; Szynkowska-Jozwik MI; Witonska IA Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744362 [TBL] [Abstract][Full Text] [Related]
55. Tunable Interfacial Electronic Pd-Si Interaction Boosts Catalysis via Accelerating O Dong T; Ji J; Yu L; Huang P; Li Y; Suo Z; Liu B; Hu Z; Huang H JACS Au; 2023 Apr; 3(4):1230-1240. PubMed ID: 37124295 [TBL] [Abstract][Full Text] [Related]
56. Roles of noble metals (M = Ag, Au, Pd, Pt and Rh) on CeO Lee JH; Jo DY; Choung JW; Kim CH; Ham HC; Lee KY J Hazard Mater; 2021 Feb; 403():124085. PubMed ID: 33265065 [TBL] [Abstract][Full Text] [Related]
57. Promoting effect of alkaline earth metal doping on catalytic activity of HC and NOx conversion over Pd-only three-way catalyst. Yang L; Lin S; Yang X; Fang W; Zhou R J Hazard Mater; 2014 Aug; 279():226-35. PubMed ID: 25064260 [TBL] [Abstract][Full Text] [Related]
58. Promotion of Ru or Ni on Alumina Catalysts with a Basic Metal for CO García-Bordejé E; Dongil AB; Conesa JM; Guerrero-Ruiz A; Rodríguez-Ramos I Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407170 [TBL] [Abstract][Full Text] [Related]
59. Reaction mechanism of dichloromethane oxidation on LaMnO Ding J; Liu J; Yang Y; Wang Z; Yu Y Chemosphere; 2021 Aug; 277():130194. PubMed ID: 33780673 [TBL] [Abstract][Full Text] [Related]
60. A CuNi Alloy-Carbon Layer Core-Shell Catalyst for Highly Efficient Conversion of Aqueous Formaldehyde to Hydrogen at Room Temperature. Zhou Z; Ng YH; Xu S; Yang S; Gao Q; Cai X; Liao J; Fang Y; Zhang S ACS Appl Mater Interfaces; 2021 Aug; 13(31):37299-37307. PubMed ID: 34324293 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]