These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 39214121)
1. Thickness-extensible higher order plate theory with enforced C1 continuity for the analysis of PEEK medical implants. Tasneem MHB; Al-Jahwari F; Al-Kindi M; Al-Lawati I; Al Lawati A Biomed Phys Eng Express; 2024 Sep; 10(6):. PubMed ID: 39214121 [TBL] [Abstract][Full Text] [Related]
2. Mechanical characterization and numerical simulation of polyether-ether-ketone (PEEK) cranial implants. El Halabi F; Rodriguez JF; Rebolledo L; Hurtós E; Doblaré M J Mech Behav Biomed Mater; 2011 Nov; 4(8):1819-32. PubMed ID: 22098881 [TBL] [Abstract][Full Text] [Related]
3. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK. Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477 [TBL] [Abstract][Full Text] [Related]
4. Modelling and structural analysis of skull/cranial implant: beyond mid-line deformities. Bogu VP; Kumar YR; Kumar Khanara A Acta Bioeng Biomech; 2017; 19(1):125-131. PubMed ID: 28552926 [TBL] [Abstract][Full Text] [Related]
5. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. Lee WT; Koak JY; Lim YJ; Kim SK; Kwon HB; Kim MJ J Biomed Mater Res B Appl Biomater; 2012 May; 100(4):1044-52. PubMed ID: 22331553 [TBL] [Abstract][Full Text] [Related]
7. Cranioplasty with customized titanium and PEEK implants in a mechanical stress model. Lethaus B; Safi Y; ter Laak-Poort M; Kloss-Brandstätter A; Banki F; Robbenmenke C; Steinseifer U; Kessler P J Neurotrauma; 2012 Apr; 29(6):1077-83. PubMed ID: 22017579 [TBL] [Abstract][Full Text] [Related]
8. Mechanical behaviour of reconstructed defected skull with custom PEEK implant and Titanium fixture plates under dynamic loading conditions using FEM. Jindal P; Bharti J; Gupta V; Dhami SS J Mech Behav Biomed Mater; 2023 Oct; 146():106063. PubMed ID: 37556925 [TBL] [Abstract][Full Text] [Related]
9. Bone healing under different lay-up configuration of carbon fiber-reinforced PEEK composite plates. Sabik A J Biomed Mater Res B Appl Biomater; 2024 Aug; 112(8):e35463. PubMed ID: 39115314 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical reinforcement by CAD-CAM materials affects stress distributions of posterior composite bridges: 3D finite element analysis. Elraggal A; Abdelraheem IM; Watts DC; Roy S; Dommeti VK; Alshabib A; Althaqafi KA; Afifi RR Dent Mater; 2024 May; 40(5):869-877. PubMed ID: 38609774 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of stress distribution of different marginal designs on PEEK and PEKK substructure materials, cortical and cancellous Bone:A finite element analysis. Karakaya K; Mutluay Ünal S Comput Biol Med; 2024 Aug; 178():108708. PubMed ID: 38861895 [TBL] [Abstract][Full Text] [Related]
12. Characterization of thick titanium plasma spray coatings on PEEK materials used for medical implants and the influence on the mechanical properties. Vogel D; Dempwolf H; Baumann A; Bader R J Mech Behav Biomed Mater; 2018 Jan; 77():600-608. PubMed ID: 29096126 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the use of PEEK material in implant-supported fixed restorations by finite element analysis. Tekin S; Değer Y; Demirci F Niger J Clin Pract; 2019 Sep; 22(9):1252-1258. PubMed ID: 31489862 [TBL] [Abstract][Full Text] [Related]
14. Homogenous scaffold-based cranial/skull implant modelling and structural analysis-unit cell algorithm-meshless approach. Phanindra Bogu V; Ravi Kumar Y; Kumar Khanra A Med Biol Eng Comput; 2017 Nov; 55(11):2053-2065. PubMed ID: 28474182 [TBL] [Abstract][Full Text] [Related]
15. Strategies to improve the performance of polyetheretherketone (PEEK) as orthopedic implants: from surface modification to addition of bioactive materials. Huang H; Liu X; Wang J; Suo M; Zhang J; Sun T; Wang H; Liu C; Li Z J Mater Chem B; 2024 May; 12(19):4533-4552. PubMed ID: 38477504 [TBL] [Abstract][Full Text] [Related]
16. Mechanical properties, hemocompatibility, cytotoxicity and systemic toxicity of carbon fibers/poly(ether-ether-ketone) composites with different fiber lengths as orthopedic implants. Li Y; Wang D; Qin W; Jia H; Wu Y; Ma J; Tang B J Biomater Sci Polym Ed; 2019 Dec; 30(18):1709-1724. PubMed ID: 31464157 [TBL] [Abstract][Full Text] [Related]
17. The Utility of Polyether-Ether-Ketone Implants Adjacent to Sinus Cavities After Craniofacial Trauma. Suresh V; Anolik R; Powers D J Oral Maxillofac Surg; 2018 Nov; 76(11):2361-2369. PubMed ID: 29852139 [TBL] [Abstract][Full Text] [Related]
18. Polyether ether ketone surface modification with plasma and gelatin for enhancing cell attachment. Mehdizadeh Omrani M; Kumar H; Mohamed MGA; Golovin K; S Milani A; Hadjizadeh A; Kim K J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):622-629. PubMed ID: 32945089 [TBL] [Abstract][Full Text] [Related]
19. [Analysis of polyetheretherketone framework on the stress distribution of implant-supported fixed maxillary prosthesis: 3-D finite element analysis]. Han XY; Ju YQ; Zhang LL; Tian ZJ Shanghai Kou Qiang Yi Xue; 2024 Aug; 33(4):367-372. PubMed ID: 39478392 [TBL] [Abstract][Full Text] [Related]
20. Polyether Ether Ketone (PEEK) Implants and the Manufacturer and User Facility Device Experience (MAUDE) Database: An Updated Review of Adverse Events and Complications. Shewmake C; Khetpal S; Ozaki W J Craniofac Surg; 2024 Mar-Apr 01; 35(2):408-411. PubMed ID: 37973071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]