These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 39214174)
1. Linking proteomic function and structure to electroactive biofilms development across electrode orientations. Dong Y; Jiang Y; Sui M; Yu J; Wu J; Gu Z; Zhou X Bioresour Technol; 2024 Nov; 412():131375. PubMed ID: 39214174 [TBL] [Abstract][Full Text] [Related]
2. Acclimation of electroactive biofilms under different operating conditions: comprehensive analysis from architecture, composition, and metabolic activity. Ma H; Dong X; Yan Y; Shi K; Wang H; Lu H; Xue J; Qiao Y; Cheng D; Jiang Q Environ Sci Pollut Res Int; 2023 Oct; 30(49):108176-108187. PubMed ID: 37749470 [TBL] [Abstract][Full Text] [Related]
3. A framework for modeling electroactive microbial biofilms performing direct electron transfer. Korth B; Rosa LF; Harnisch F; Picioreanu C Bioelectrochemistry; 2015 Dec; 106(Pt A):194-206. PubMed ID: 25921352 [TBL] [Abstract][Full Text] [Related]
4. Growth and current production of mixed culture anodic biofilms remain unaffected by sub-microscale surface roughness. Pierra M; Golozar M; Zhang X; Prévoteau A; De Volder M; Reynaerts D; Rabaey K Bioelectrochemistry; 2018 Aug; 122():213-220. PubMed ID: 29694942 [TBL] [Abstract][Full Text] [Related]
5. Effect of nickel (II) on the performance of anodic electroactive biofilms in bioelectrochemical systems. Amanze C; Zheng X; Anaman R; Wu X; Fosua BA; Xiao S; Xia M; Ai C; Yu R; Wu X; Shen L; Liu Y; Li J; Dolgor E; Zeng W Water Res; 2022 Aug; 222():118889. PubMed ID: 35907303 [TBL] [Abstract][Full Text] [Related]
6. Enrichment of Clostridia enhances Geobacter population and electron harvesting in a complex electroactive biofilm. Rivalland C; Radouani F; Gonzalez-Rizzo S; Robert F; Salvin P Bioelectrochemistry; 2022 Feb; 143():107954. PubMed ID: 34624726 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems. Zhang Y; Li G; Wen J; Xu Y; Sun J; Ning XA; Lu X; Wang Y; Yang Z; Yuan Y Chemosphere; 2018 Apr; 196():377-385. PubMed ID: 29316463 [TBL] [Abstract][Full Text] [Related]
8. Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells. Stöckl M; Teubner NC; Holtmann D; Mangold KM; Sand W ACS Appl Mater Interfaces; 2019 Mar; 11(9):8961-8968. PubMed ID: 30730701 [TBL] [Abstract][Full Text] [Related]
9. Periodic polarization of electroactive biofilms increases current density and charge carriers concentration while modifying biofilm structure. Zhang X; Prévoteau A; Louro RO; Paquete CM; Rabaey K Biosens Bioelectron; 2018 Dec; 121():183-191. PubMed ID: 30218926 [TBL] [Abstract][Full Text] [Related]
10. Advances in mechanisms and engineering of electroactive biofilms. You Z; Li J; Wang Y; Wu D; Li F; Song H Biotechnol Adv; 2023 Sep; 66():108170. PubMed ID: 37148984 [TBL] [Abstract][Full Text] [Related]
11. Single-cell metagenomics and metagenomics approaches reveal extracellular electron transfer of psychrophilic electroactive biofilms. Yang Y; Fang A; Feng K; Zhang D; Zhou H; Xing D Sci Total Environ; 2022 Aug; 836():155606. PubMed ID: 35504378 [TBL] [Abstract][Full Text] [Related]
12. Periodic step polarization accelerates electron recovery by electroactive biofilms (EABs). Gao Y; Xia L; Yao P; Lee HS Biotechnol Bioeng; 2023 Jun; 120(6):1545-1556. PubMed ID: 36782377 [TBL] [Abstract][Full Text] [Related]
13. Continuous shear stress alters metabolism, mass-transport, and growth in electroactive biofilms independent of surface substrate transport. Jones AD; Buie CR Sci Rep; 2019 Feb; 9(1):2602. PubMed ID: 30796283 [TBL] [Abstract][Full Text] [Related]
14. On-Line Raman Spectroscopic Study of Cytochromes' Redox State of Biofilms in Microbial Fuel Cells. Krige A; Sjöblom M; Ramser K; Christakopoulos P; Rova U Molecules; 2019 Feb; 24(3):. PubMed ID: 30759821 [TBL] [Abstract][Full Text] [Related]
15. Enhanced catalytic capability of electroactive biofilm modified with different kinds of carbon nanotubes. Jiang Z; Zhang D; Zhou L; Deng D; Duan M; Liu Y Anal Chim Acta; 2018 Dec; 1035():51-59. PubMed ID: 30224144 [TBL] [Abstract][Full Text] [Related]
16. Interfacial electron transfer between Geobacter sulfurreducens and gold electrodes via carboxylate-alkanethiol linkers: Effects of the linker length. Füeg M; Borjas Z; Estevez-Canales M; Esteve-Núñez A; Pobelov IV; Broekmann P; Kuzume A Bioelectrochemistry; 2019 Apr; 126():130-136. PubMed ID: 30590223 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneous Structure Regulated by Selection Pressure on Bacterial Adhesion Optimized the Viability Stratification Structure of Electroactive Biofilms. Chen X; Li Y; Wu J; Li N; He W; Feng Y; Liu J ACS Appl Mater Interfaces; 2022 Jan; 14(2):2754-2767. PubMed ID: 34982530 [TBL] [Abstract][Full Text] [Related]
18. A chip-based 128-channel potentiostat for high-throughput studies of bioelectrochemical systems: Optimal electrode potentials for anodic biofilms. Molderez TR; Prévoteau A; Ceyssens F; Verhelst M; Rabaey K Biosens Bioelectron; 2021 Feb; 174():112813. PubMed ID: 33303324 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires. Steidl RJ; Lampa-Pastirk S; Reguera G Nat Commun; 2016 Aug; 7():12217. PubMed ID: 27481214 [TBL] [Abstract][Full Text] [Related]
20. The Planktonic Relationship Between Fluid-Like Electrodes and Bacteria: Wiring in Motion. Tejedor-Sanz S; Quejigo JR; Berná A; Esteve-Núñez A ChemSusChem; 2017 Feb; 10(4):693-700. PubMed ID: 27860438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]