These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 39214308)

  • 1. Fusion of FokI and catalytically inactive prokaryotic Argonautes enables site-specific programmable DNA cleavage.
    Wang Q; Rao GS; Marsic T; Aman R; Mahfouz M
    J Biol Chem; 2024 Sep; 300(9):107720. PubMed ID: 39214308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable site-specific DNA double-strand breaks via PNA-assisted prokaryotic Argonautes.
    Marsic T; Gundra SR; Wang Q; Aman R; Mahas A; Mahfouz MM
    Nucleic Acids Res; 2023 Sep; 51(17):9491-9506. PubMed ID: 37560931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual Guide-binding Pockets in RNA-targeting pAgo Nucleases.
    Agapov A; Lisitskaya L; Kussakina X; Kropocheva E; Esyunina D; Kulbachinskiy A
    J Mol Biol; 2024 Oct; 436(20):168745. PubMed ID: 39147126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing Peptide Nucleic Acids and the Eukaryotic Resolvase MOC1 for Programmable, Precise Generation of Double-Strand DNA Breaks.
    Sivakrishna Rao G; Saleh AH; Melliti F; Muntjeeb S; Mahfouz M
    Anal Chem; 2024 Feb; 96(6):2599-2609. PubMed ID: 38300270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial Argonaute Proteins Aid Cell Division in the Presence of Topoisomerase Inhibitors in Escherichia coli.
    Olina A; Agapov A; Yudin D; Sutormin D; Galivondzhyan A; Kuzmenko A; Severinov K; Aravin AA; Kulbachinskiy A
    Microbiol Spectr; 2023 Jun; 11(3):e0414622. PubMed ID: 37102866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site- and strand-specific nicking of DNA by fusion proteins derived from MutH and I-SceI or TALE repeats.
    Gabsalilow L; Schierling B; Friedhoff P; Pingoud A; Wende W
    Nucleic Acids Res; 2013 Apr; 41(7):e83. PubMed ID: 23408850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR FokI Dead Cas9 System: Principles and Applications in Genome Engineering.
    Saifaldeen M; Al-Ansari DE; Ramotar D; Aouida M
    Cells; 2020 Nov; 9(11):. PubMed ID: 33233344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification.
    Guilinger JP; Thompson DB; Liu DR
    Nat Biotechnol; 2014 Jun; 32(6):577-582. PubMed ID: 24770324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monomeric site-specific nucleases for genome editing.
    Kleinstiver BP; Wolfs JM; Kolaczyk T; Roberts AK; Hu SX; Edgell DR
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8061-6. PubMed ID: 22566637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of double-stranded DNA by the Rhodobacter sphaeroides Argonaute protein.
    Lisitskaya L; Petushkov I; Esyunina D; Aravin A; Kulbachinskiy A
    Biochem Biophys Res Commun; 2020 Dec; 533(4):1484-1489. PubMed ID: 33333714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creating highly specific nucleases by fusion of active restriction endonucleases and catalytically inactive homing endonucleases.
    Fonfara I; Curth U; Pingoud A; Wende W
    Nucleic Acids Res; 2012 Jan; 40(2):847-60. PubMed ID: 21965534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A programmable pAgo nuclease with universal guide and target specificity from the mesophilic bacterium Kurthia massiliensis.
    Kropocheva E; Kuzmenko A; Aravin AA; Esyunina D; Kulbachinskiy A
    Nucleic Acids Res; 2021 Apr; 49(7):4054-4065. PubMed ID: 33744962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NgAgo possesses guided DNA nicking activity.
    Lee KZ; Mechikoff MA; Kikla A; Liu A; Pandolfi P; Fitzgerald K; Gimble FS; Solomon KV
    Nucleic Acids Res; 2021 Sep; 49(17):9926-9937. PubMed ID: 34478558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmable cleavage of linear double-stranded DNA by combined action of Argonaute CbAgo from Clostridium butyricum and nuclease deficient RecBC helicase from E. coli.
    Vaiskunaite R; Vainauskas J; Morris JJL; Potapov V; Bitinaite J
    Nucleic Acids Res; 2022 May; 50(8):4616-4629. PubMed ID: 35420131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain.
    Li T; Huang S; Jiang WZ; Wright D; Spalding MH; Weeks DP; Yang B
    Nucleic Acids Res; 2011 Jan; 39(1):359-72. PubMed ID: 20699274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong temperature effects on the fidelity of target DNA recognition by a thermophilic pAgo nuclease.
    Panteleev V; Kropocheva E; Esyunina D; Kulbachinskiy A
    Biochimie; 2023 Jun; 209():142-149. PubMed ID: 36804511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel zinc-finger nuclease platform with a sequence-specific cleavage module.
    Schierling B; Dannemann N; Gabsalilow L; Wende W; Cathomen T; Pingoud A
    Nucleic Acids Res; 2012 Mar; 40(6):2623-38. PubMed ID: 22135304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensing of DNA modifications by pAgo proteins in vitro.
    Beskrovnaia M; Agapov A; Makasheva K; Zharkov DO; Esyunina D; Kulbachinskiy A
    Biochimie; 2024 May; 220():39-47. PubMed ID: 38128776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creating designed zinc-finger nucleases with minimal cytotoxicity.
    Ramalingam S; Kandavelou K; Rajenderan R; Chandrasegaran S
    J Mol Biol; 2011 Jan; 405(3):630-41. PubMed ID: 21094162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements.
    Makarova KS; Wolf YI; van der Oost J; Koonin EV
    Biol Direct; 2009 Aug; 4():29. PubMed ID: 19706170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.