These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39214816)

  • 1. An integrated radiopathomics machine learning model to predict pathological response to preoperative chemotherapy in gastric cancer.
    Song Y; Liu S; Liu X; Jia H; Shi H; Liu X; Hao D; Wang H; Xing X
    Acad Radiol; 2024 Aug; ():. PubMed ID: 39214816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive radiopathological nomogram for the prediction of pathological staging in gastric cancer using CT-derived and WSI-based features.
    Tan Y; Feng LJ; Huang YH; Xue JW; Long LL; Feng ZB
    Transl Oncol; 2024 Feb; 40():101864. PubMed ID: 38141376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a Radiopathomics model based on CT scans and whole slide images for discriminating between Stage I-II and Stage III gastric cancer.
    Tan Y; Feng LJ; Huang YH; Xue JW; Feng ZB; Long LL
    BMC Cancer; 2024 Mar; 24(1):368. PubMed ID: 38519974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiparametric MRI-based radiomics combined with pathomics features for prediction of the efficacy of neoadjuvant chemotherapy in breast cancer.
    Xu N; Guo X; Ouyang Z; Ran F; Li Q; Duan X; Zhu Y; Niu X; Liao C; Yang J
    Heliyon; 2024 Jan; 10(2):e24371. PubMed ID: 38298695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study.
    Feng L; Liu Z; Li C; Li Z; Lou X; Shao L; Wang Y; Huang Y; Chen H; Pang X; Liu S; He F; Zheng J; Meng X; Xie P; Yang G; Ding Y; Wei M; Yun J; Hung MC; Zhou W; Wahl DR; Lan P; Tian J; Wan X
    Lancet Digit Health; 2022 Jan; 4(1):e8-e17. PubMed ID: 34952679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiomics based on machine learning algorithms could predict prognosis and postoperative chemotherapy benefits of patients with gastric cancer: a retrospective cohort study.
    Xiang Y; Hu Y; Chen C; Zhi H; Zhang Z; Lu M; Chen X; Luo Z; Chen S; Dias-Neto E; Pizzini P; Chen X; Chen X; Zhuang Y; Dong Q
    J Gastrointest Oncol; 2023 Oct; 14(5):2048-2063. PubMed ID: 37969820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers.
    Huang Y; Yao Z; Li L; Mao R; Huang W; Hu Z; Hu Y; Wang Y; Guo R; Tang X; Yang L; Wang Y; Luo R; Yu J; Zhou J
    EBioMedicine; 2023 Aug; 94():104706. PubMed ID: 37478528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The predictive potential of contrast-enhanced computed tomography based radiomics in the preoperative staging of cT4 gastric cancer.
    Liu B; Zhang D; Wang H; Wang H; Zhang P; Zhang D; Zhang Q; Zhang J
    Quant Imaging Med Surg; 2022 Nov; 12(11):5222-5238. PubMed ID: 36330185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preoperative prediction of vessel invasion in locally advanced gastric cancer based on computed tomography radiomics and machine learning.
    Hu ZW; Liang P; Li ZL; Yong LL; Lu H; Wang R; Gao JB
    Oncol Lett; 2023 Jul; 26(1):293. PubMed ID: 37274479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A clinical-radiomic-pathomic model for prognosis prediction in patients with hepatocellular carcinoma after radical resection.
    Xie Q; Zhao Z; Yang Y; Wang X; Wu W; Jiang H; Hao W; Peng R; Luo C
    Cancer Med; 2024 Jun; 13(11):e7374. PubMed ID: 38864473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning models combining computed tomography semantic features and selected clinical variables for accurate prediction of the pathological grade of bladder cancer.
    Deng Z; Dong W; Xiong S; Jin D; Zhou H; Zhang L; Xie L; Deng Y; Xu R; Fan B
    Front Oncol; 2023; 13():1166245. PubMed ID: 37223680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of a radiopathomic model for predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer patients.
    Zhang J; Wu Q; Yin W; Yang L; Xiao B; Wang J; Yao X
    BMC Cancer; 2023 May; 23(1):431. PubMed ID: 37173635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study.
    Cui Y; Zhang J; Li Z; Wei K; Lei Y; Ren J; Wu L; Shi Z; Meng X; Yang X; Gao X
    EClinicalMedicine; 2022 Apr; 46():101348. PubMed ID: 35340629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital histopathological images of biopsy predict response to neoadjuvant chemotherapy for locally advanced gastric cancer.
    Zhou Z; Ren Y; Zhang Z; Guan T; Wang Z; Chen W; Luo T; Li G
    Gastric Cancer; 2023 Sep; 26(5):734-742. PubMed ID: 37322381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Transfer Learning Radiomics Nomogram for Preoperative Prediction of Borrmann Type IV Gastric Cancer From Primary Gastric Lymphoma.
    Feng B; Huang L; Liu Y; Chen Y; Zhou H; Yu T; Xue H; Chen Q; Zhou T; Kuang Q; Yang Z; Chen X; Chen X; Peng Z; Long W
    Front Oncol; 2021; 11():802205. PubMed ID: 35087761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Computed Tomography-Based Radiomics Signature to Predict Response to Neoadjuvant Chemotherapy for Locally Advanced Gastric Cancer.
    Wang W; Peng Y; Feng X; Zhao Y; Seeruttun SR; Zhang J; Cheng Z; Li Y; Liu Z; Zhou Z
    JAMA Netw Open; 2021 Aug; 4(8):e2121143. PubMed ID: 34410397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Delta-radiomics model for preoperative evaluation of Neoadjuvant chemotherapy response in high-grade osteosarcoma.
    Lin P; Yang PF; Chen S; Shao YY; Xu L; Wu Y; Teng W; Zhou XZ; Li BH; Luo C; Xu LM; Huang M; Niu TY; Ye ZM
    Cancer Imaging; 2020 Jan; 20(1):7. PubMed ID: 31937372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction and validation of artificial intelligence pathomics models for predicting pathological staging in colorectal cancer: Using multimodal data and clinical variables.
    Tan Y; Liu R; Xue JW; Feng Z
    Cancer Med; 2024 Apr; 13(7):e6947. PubMed ID: 38545828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning algorithm-based multimodal MRI radiomics and pathomics data improve prediction of bone metastases in primary prostate cancer.
    Zhang YF; Zhou C; Guo S; Wang C; Yang J; Yang ZJ; Wang R; Zhang X; Zhou FH
    J Cancer Res Clin Oncol; 2024 Feb; 150(2):78. PubMed ID: 38316655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A radiomics nomogram analysis based on CT images and clinical features for preoperative Lauren classification in gastric cancer.
    Nie T; Liu D; Ai S; He Y; Yang M; Chen J; Yuan Z; Liu Y
    Jpn J Radiol; 2023 Apr; 41(4):401-408. PubMed ID: 36370327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.