These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 39216243)
41. Titania-supported PdAu bimetallic catalysts prepared from dendrimer-encapsulated nanoparticle precursors. Scott RW; Sivadinarayana C; Wilson OM; Yan Z; Goodman DW; Crooks RM J Am Chem Soc; 2005 Feb; 127(5):1380-1. PubMed ID: 15686363 [TBL] [Abstract][Full Text] [Related]
42. Microreactor of Pd nanoparticles immobilized hollow microspheres for catalytic hydrodechlorination of chlorophenols in water. Lan Y; Yang L; Zhang M; Zhang W; Wang S ACS Appl Mater Interfaces; 2010 Jan; 2(1):127-33. PubMed ID: 20356229 [TBL] [Abstract][Full Text] [Related]
43. The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions: a promising approach to practical use in wastewater. Xia C; Liu Y; Zhou S; Yang C; Liu S; Xu J; Yu J; Chen J; Liang X J Hazard Mater; 2009 Sep; 169(1-3):1029-33. PubMed ID: 19477071 [TBL] [Abstract][Full Text] [Related]
44. Interfacially Locked Metal Aerogel Inside Porous Polymer Composite for Sensitive and Durable Flexible Piezoresistive Sensors. Li J; Li N; Zheng Y; Lou D; Jiang Y; Jiang J; Xu Q; Yang J; Sun Y; Pan C; Wang J; Peng Z; Zheng Z; Liu W Adv Sci (Weinh); 2022 Aug; 9(23):e2201912. PubMed ID: 35748166 [TBL] [Abstract][Full Text] [Related]
45. Comparison of treatability of four different chlorophenol-containing wastewater by pyrite-Fenton process combined with aerobic biodegradation: Role of sludge acclimation. Kayan I; Oz NA; Kantar C J Environ Manage; 2021 Feb; 279():111781. PubMed ID: 33307317 [TBL] [Abstract][Full Text] [Related]
46. Enhanced Pd pillared clays by Rh inclusion for the catalytic hydrodechlorination of chlorophenols in water. Molina CB; Pizarro AH; Casas JA; Rodriguez JJ Water Sci Technol; 2012; 65(4):653-60. PubMed ID: 22277223 [TBL] [Abstract][Full Text] [Related]
47. Recycling of transformer oil contaminated by polychlorinated biphenyls (PCBs) using catalytic hydrodechlorination. Choi HM; Veriansyah B; Kim J; Kim JD; Lee YW J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Apr; 44(5):494-501. PubMed ID: 19241263 [TBL] [Abstract][Full Text] [Related]
48. MOF-Derived CoSe Wang K; Liu L; Liu D; Wei Y; Liu Y; Wang X; Vasenko AS; Li M; Ding S; Xiao C; Pan H Small; 2024 Jul; 20(27):e2310530. PubMed ID: 38317526 [TBL] [Abstract][Full Text] [Related]
49. Screening of zero valent mono/bimetallic catalysts and recommendation of Raney Ni (without reducing agent) for dechlorination of 4-chlorophenol. Raut SS; Shetty R; Raju NM; Kamble SP; Kulkarni PS Chemosphere; 2020 Jul; 250():126298. PubMed ID: 32234622 [TBL] [Abstract][Full Text] [Related]
50. Aqueous hydrodechlorination of 4-chlorophenol over an Rh/reduced graphene oxide synthesized by a facile one-pot solvothermal process under mild conditions. Ren Y; Fan G; Wang C J Hazard Mater; 2014 Jun; 274():32-40. PubMed ID: 24762698 [TBL] [Abstract][Full Text] [Related]
51. Hollow mesoporous silica nanotubes modified with palladium nanoparticles for environmental catalytic applications. Tian M; Long Y; Xu D; Wei S; Dong Z J Colloid Interface Sci; 2018 Jul; 521():132-140. PubMed ID: 29558692 [TBL] [Abstract][Full Text] [Related]
52. Electron-rich palladium regulated by cationic vacancies in CoFe layered double hydroxide boosts electrocatalytic hydrodechlorination. Kong Z; Li D; Cai R; Li T; Diao L; Chen X; Wang X; Zheng H; Jia Y; Yang D J Hazard Mater; 2024 Feb; 463():132964. PubMed ID: 37951175 [TBL] [Abstract][Full Text] [Related]
53. Synergistic Effects in CNTs-PdAu/Pt Trimetallic Nanoparticles with High Electrocatalytic Activity and Stability. Cai XL; Liu CH; Liu J; Lu Y; Zhong YN; Nie KQ; Xu JL; Gao X; Sun XH; Wang SD Nanomicro Lett; 2017; 9(4):48. PubMed ID: 30393743 [TBL] [Abstract][Full Text] [Related]
54. Controllable Synthesis of Supported PdAu Nanoclusters and Their Electronic Structure-Dependent Catalytic Activity in Selective Dehydrogenation of Formic Acid. Ye W; Huang H; Zou W; Ge Y; Lu R; Zhang S ACS Appl Mater Interfaces; 2021 Jul; 13(29):34258-34265. PubMed ID: 34263596 [TBL] [Abstract][Full Text] [Related]
55. Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis. Blosi M; Ortelli S; Costa AL; Dondi M; Lolli A; Andreoli S; Benito P; Albonetti S Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773672 [TBL] [Abstract][Full Text] [Related]
56. TiO Zhao Z; Yu L; Zheng L; Guo T; Lv Z; Song S; Zheng H J Hazard Mater; 2022 Aug; 435():128998. PubMed ID: 35487007 [TBL] [Abstract][Full Text] [Related]
57. Tannic acid modified PdAu alloy nanowires as efficient oxygen reduction electrocatalysts. Wang H; Jiao S; Liu S; Yin S; Zhou T; Xu Y; Li X; Wang Z; Wang L Nanotechnology; 2022 Jun; 33(37):. PubMed ID: 35653927 [TBL] [Abstract][Full Text] [Related]
58. Preparation of melamine sponge decorated with silver nanoparticles-modified graphene for water disinfection. Deng CH; Gong JL; Zhang P; Zeng GM; Song B; Liu HY J Colloid Interface Sci; 2017 Feb; 488():26-38. PubMed ID: 27821337 [TBL] [Abstract][Full Text] [Related]
59. Carbon-nanotube-doped Pd-Ni bimetallic three-dimensional electrode for electrocatalytic hydrodechlorination of 4-chlorophenol: Enhanced activity and stability. Wu Y; Gan L; Zhang S; Song H; Lu C; Li W; Wang Z; Jiang B; Li A J Hazard Mater; 2018 Aug; 356():17-25. PubMed ID: 29804010 [TBL] [Abstract][Full Text] [Related]
60. Hydrodechlorination of chlorophenols at low temperature on a novel Pd catalyst. Jin Z; Yu C; Wang X; Wan Y; Li D; Lu G Chem Commun (Camb); 2009 Aug; (29):4438-40. PubMed ID: 19597618 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]