These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 39216553)
1. Assessment of an eco-efficient process for the optimization of metal recovery in lithium cobalt oxide and lithium nickel manganese cobalt oxide batteries. Barros TV; de Oliveira JA; Dos Santos MP; Bispo DF; Freitas LDS; Jegatheesan V; Cardozo-Filho L Chemosphere; 2024 Sep; 364():143209. PubMed ID: 39216553 [TBL] [Abstract][Full Text] [Related]
2. Recovery of lithium and cobalt from lithium cobalt oxide and lithium nickel manganese cobalt oxide batteries using supercritical water. Barros TV; Notario VA; de Oliveira JA; Bispo DF; Freitas LDS; Jegatheesan V; Cardozo-Filho L Environ Pollut; 2024 Oct; 359():124570. PubMed ID: 39029860 [TBL] [Abstract][Full Text] [Related]
3. Global material flow analysis of end-of-life of lithium nickel manganese cobalt oxide batteries from battery electric vehicles. Shafique M; Akbar A; Rafiq M; Azam A; Luo X Waste Manag Res; 2023 Feb; 41(2):376-388. PubMed ID: 36373335 [TBL] [Abstract][Full Text] [Related]
4. Core chemistry influences the toxicity of multicomponent metal oxide nanomaterials, lithium nickel manganese cobalt oxide, and lithium cobalt oxide to Daphnia magna. Bozich J; Hang M; Hamers R; Klaper R Environ Toxicol Chem; 2017 Sep; 36(9):2493-2502. PubMed ID: 28295556 [TBL] [Abstract][Full Text] [Related]
5. Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium ion batteries. Pant D; Dolker T Waste Manag; 2017 Feb; 60():689-695. PubMed ID: 27697424 [TBL] [Abstract][Full Text] [Related]
6. Materials recovery from NMC batteries with water as the sole solvent. Karati A; Gargh PP; Paul S; Das S; Shrotriya P; Nlebedim IC J Environ Manage; 2024 Aug; 366():121710. PubMed ID: 38986378 [TBL] [Abstract][Full Text] [Related]
7. Farming for battery metals. Nkrumah PN; Echevarria G; Erskine PD; van der Ent A Sci Total Environ; 2022 Jun; 827():154092. PubMed ID: 35219682 [TBL] [Abstract][Full Text] [Related]
8. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries. Kim Y ACS Appl Mater Interfaces; 2012 May; 4(5):2329-33. PubMed ID: 22497580 [TBL] [Abstract][Full Text] [Related]
9. Performance and Ageing Robustness of Graphite/NMC Pouch Prototypes Manufactured through Eco-Friendly Materials and Processes. Loeffler N; Kim GT; Passerini S; Gutierrez C; Cendoya I; De Meatza I; Alessandrini F; Appetecchi GB ChemSusChem; 2017 Sep; 10(18):3581-3587. PubMed ID: 28783250 [TBL] [Abstract][Full Text] [Related]
10. A novel closed-loop biotechnology for recovery of cobalt from a lithium-ion battery active cathode material. Pakostova E; Graves J; Latvyte E; Maddalena G; Horsfall L Microbiology (Reading); 2024 Jul; 170(7):. PubMed ID: 39016549 [TBL] [Abstract][Full Text] [Related]
11. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media. Chen X; Zhou T Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255 [TBL] [Abstract][Full Text] [Related]
12. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process. Tanong K; Coudert L; Mercier G; Blais JF J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877 [TBL] [Abstract][Full Text] [Related]
13. Uncovering the in-use metal stocks and implied recycling potential in electric vehicle batteries considering cascaded use: a case study of China. Yang H; Song X; Zhang X; Lu B; Yang D; Li B Environ Sci Pollut Res Int; 2021 Sep; 28(33):45867-45878. PubMed ID: 33884548 [TBL] [Abstract][Full Text] [Related]
14. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126 [TBL] [Abstract][Full Text] [Related]
15. Circularity of Lithium-Ion Battery Materials in Electric Vehicles. Dunn J; Slattery M; Kendall A; Ambrose H; Shen S Environ Sci Technol; 2021 Apr; 55(8):5189-5198. PubMed ID: 33764763 [TBL] [Abstract][Full Text] [Related]
16. Circular economy strategies for mitigating metals shortages in electric vehicle batteries under China's carbon-neutral target. Hu Z; Yu B; Daigo I; Tan J; Sun F; Zhang S J Environ Manage; 2024 Feb; 352():120079. PubMed ID: 38242028 [TBL] [Abstract][Full Text] [Related]
17. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries. Yang Y; Lei S; Song S; Sun W; Wang L Waste Manag; 2020 Feb; 102():131-138. PubMed ID: 31677520 [TBL] [Abstract][Full Text] [Related]
18. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies. Quan J; Zhao S; Song D; Wang T; He W; Li G Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948 [TBL] [Abstract][Full Text] [Related]
19. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Wang MM; Zhang CC; Zhang FS Waste Manag; 2016 May; 51():239-244. PubMed ID: 26965214 [TBL] [Abstract][Full Text] [Related]
20. Economic and environmental characterization of an evolving Li-ion battery waste stream. Wang X; Gaustad G; Babbitt CW; Bailey C; Ganter MJ; Landi BJ J Environ Manage; 2014 Mar; 135():126-34. PubMed ID: 24531384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]