These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39216566)

  • 1. Enhancing bone repair through improved angiogenesis and osteogenesis using mesoporous silica nanoparticle-loaded Konjac glucomannan-based interpenetrating network scaffolds.
    Kanniyappan H; Sundaram MK; Ravikumar A; Chakraborty S; Gnanamani A; Mani U; Kumar N; Muthuvijayan V
    Int J Biol Macromol; 2024 Nov; 279(Pt 2):135182. PubMed ID: 39216566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and evaluation of Konjac glucomannan-based bioactive interpenetrating network (IPN) scaffolds for engineering vascularized bone tissues.
    Kanniyappan H; Thangavel P; Chakraborty S; Arige V; Muthuvijayan V
    Int J Biol Macromol; 2020 Jan; 143():30-40. PubMed ID: 31811851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GO/Cu Nanosheet-Integrated Hydrogel Platform as a Bioactive and Biocompatible Scaffold for Enhanced Calvarial Bone Regeneration.
    Yang Y; Zhou B; Li M; Sun Y; Jiang X; Zhou X; Hu C; Zhang D; Luo H; Tan W; Yang X; Lei S
    Int J Nanomedicine; 2024; 19():8309-8336. PubMed ID: 39161358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting the Osteogenic and Angiogenic Performance of Multiscale Porous Polycaprolactone Scaffolds by
    Aldemir Dikici B; Reilly GC; Claeyssens F
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12510-12524. PubMed ID: 32100541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D chitosan/hydroxyapatite scaffolds containing mesoporous SiO2-HA particles: A new step to healing bone defects.
    Abdian N; Soltani Zangbar H; Etminanfar M; Hamishehkar H
    Int J Biol Macromol; 2024 Oct; 278(Pt 4):135014. PubMed ID: 39181354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrin-konjac glucomannan-black phosphorus hydrogel scaffolds loaded with nasal ectodermal mesenchymal stem cells accelerated alveolar bone regeneration.
    Zou Y; Mei X; Wang X; Zhang X; Wang X; Xiang W; Lu N
    BMC Oral Health; 2024 Aug; 24(1):878. PubMed ID: 39095803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercritical CO
    Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E
    Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated Bone Regeneration by Gold-Nanoparticle-Loaded Mesoporous Silica through Stimulating Immunomodulation.
    Liang H; Jin C; Ma L; Feng X; Deng X; Wu S; Liu X; Yang C
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41758-41769. PubMed ID: 31610117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering.
    Luo Z; Deng Y; Zhang R; Wang M; Bai Y; Zhao Q; Lyu Y; Wei J; Wei S
    Colloids Surf B Biointerfaces; 2015 Jul; 131():73-82. PubMed ID: 25969416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis
    Gu Y; Zhang J; Zhang X; Liang G; Xu T; Niu W
    Tissue Eng Regen Med; 2019 Aug; 16(4):415-429. PubMed ID: 31413945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printing GelMA/PVA Interpenetrating Polymer Networks Scaffolds Mediated with CuO Nanoparticles for Angiogenesis.
    Hu Q; Lu R; Liu S; Liu Y; Gu Y; Zhang H
    Macromol Biosci; 2022 Oct; 22(10):e2200208. PubMed ID: 35904133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug.
    El-Fiqi A; Kim JH; Kim HW
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1140-52. PubMed ID: 25531645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of dexamethasone-loaded mesoporous silica nanoparticles into mineralized porous biocomposite scaffolds for improving osteogenic activity.
    Zhou X; Liu P; Nie W; Peng C; Li T; Qiang L; He C; Wang J
    Int J Biol Macromol; 2020 Apr; 149():116-126. PubMed ID: 31987948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan-hybrid poss nanocomposites for bone regeneration: The effect of poss nanocage on surface, morphology, structure and in vitro bioactivity.
    Tamburaci S; Tihminlioglu F
    Int J Biol Macromol; 2020 Jan; 142():643-657. PubMed ID: 31622724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenic properties of PBLG-g-HA/PLLA nanocomposites.
    Liao L; Yang S; Miron RJ; Wei J; Zhang Y; Zhang M
    PLoS One; 2014; 9(9):e105876. PubMed ID: 25184285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering.
    Qiu K; Chen B; Nie W; Zhou X; Feng W; Wang W; Chen L; Mo X; Wei Y; He C
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4137-48. PubMed ID: 26736029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering.
    Cattalini JP; Roether J; Hoppe A; Pishbin F; Haro Durand L; Gorustovich A; Boccaccini AR; Lucangioli S; Mouriño V
    Biomed Mater; 2016 Oct; 11(6):065003. PubMed ID: 27767020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect.
    Tang W; Lin D; Yu Y; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Mar; 32():309-323. PubMed ID: 26689464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair.
    Zou F; Jiang J; Lv F; Xia X; Ma X
    J Nanobiotechnology; 2020 Feb; 18(1):39. PubMed ID: 32103765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.