These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 39217185)
1. Random laser ablated tags for anticounterfeiting purposes and towards physically unclonable functions. Gandla S; Yoon J; Yang CW; Lee H; Park W; Kim S Nat Commun; 2024 Aug; 15(1):7592. PubMed ID: 39217185 [TBL] [Abstract][Full Text] [Related]
2. Low Cost and Easy Validation Anticounterfeiting Plasmonic Tags Based on Thin Films of Metal and Dielectric. Ferraro A; Bruno MDL; Papuzzo G; Varchera R; Forestiero A; De Santo MP; Caputo R; Barberi RC Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457987 [TBL] [Abstract][Full Text] [Related]
3. Gap-enhanced Raman tags for physically unclonable anticounterfeiting labels. Gu Y; He C; Zhang Y; Lin L; Thackray BD; Ye J Nat Commun; 2020 Jan; 11(1):516. PubMed ID: 31980613 [TBL] [Abstract][Full Text] [Related]
4. Flexible Physical Unclonable Functions Based on Non-deterministically Distributed Dye-Doped Fibers and Droplets. Bruno MDL; Lio GE; Ferraro A; Nocentini S; Papuzzo G; Forestiero A; Desiderio G; De Santo MP; Wiersma DS; Caputo R; Golemme G; Riboli F; Barberi RC ACS Appl Mater Interfaces; 2024 Jul; 16(28):37063-37072. PubMed ID: 38972004 [TBL] [Abstract][Full Text] [Related]
5. Author Correction: Random laser ablated tags for anticounterfeiting purposes and towards physically unclonable functions. Gandla S; Yoon J; Yang CW; Lee H; Park W; Kim S Nat Commun; 2024 Oct; 15(1):8772. PubMed ID: 39389948 [No Abstract] [Full Text] [Related]
6. Laser Generation of Sub-Micrometer Wrinkles in a Chalcogenide Glass Film as Physical Unclonable Functions. Martinez P; Papagiannouli I; Descamps D; Petit S; Marthelot J; Lévy A; Fabre B; Dory JB; Bernier N; Raty JY; Noé P; Gaudin J Adv Mater; 2020 Sep; 32(38):e2003032. PubMed ID: 32761963 [TBL] [Abstract][Full Text] [Related]
7. Femtosecond Laser Ablation of Quantum Dot Films toward Physical Unclonable Multilevel Fluorescent Anticounterfeiting Labels. Liang SY; Liu YF; Ji ZK; Xia H ACS Appl Mater Interfaces; 2023 Mar; 15(8):10986-10993. PubMed ID: 36692254 [TBL] [Abstract][Full Text] [Related]
8. Biocompatible optical physically unclonable function hydrogel microparticles for on-dose authentication. Zhang M; Raghunath A; Zhao A; Eral HB Heliyon; 2024 Jan; 10(1):e22895. PubMed ID: 38163172 [TBL] [Abstract][Full Text] [Related]
9. Nanocatalyst-Enabled Physically Unclonable Functions as Smart Anticounterfeiting Tags with AI-Aided Smartphone Authentication. Moglianetti M; Pedone D; Morerio P; Scarsi A; Donati P; Bustreo M; Del Bue A; Pompa PP ACS Appl Mater Interfaces; 2022 Jun; 14(22):25898-25906. PubMed ID: 35612325 [TBL] [Abstract][Full Text] [Related]
11. Optically Readable, Physically Unclonable Subwavelength Pixel via Multicolor Quantum Dot Printing for Anticounterfeiting. Man Z; Dong C; Bian J; Lu Z; Lu YQ; Zhang W Nano Lett; 2024 Jun; 24(23):7019-7024. PubMed ID: 38808680 [TBL] [Abstract][Full Text] [Related]
12. Versatile and Validated Optical Authentication System Based on Physical Unclonable Functions. Arppe-Tabbara R; Tabbara M; Sørensen TJ ACS Appl Mater Interfaces; 2019 Feb; 11(6):6475-6482. PubMed ID: 30648843 [TBL] [Abstract][Full Text] [Related]
13. Unclonable Photonic Crystal Hydrogels with Controllable Encoding Capacity for Anticounterfeiting. Wu J; Li J; Liu X; Gong L; Chen J; Tang Z; Lin W; Mu Y; Lin X; Hong W; Yi G; Chen X ACS Appl Mater Interfaces; 2022 Jan; 14(1):2369-2380. PubMed ID: 34958565 [TBL] [Abstract][Full Text] [Related]
14. Randomly Induced Phase Transformation in Silk Protein-Based Microlaser Arrays for Anticounterfeiting. Fan Y; Zhang C; Gao Z; Zhou W; Hou Y; Zhou Z; Yao J; Zhao YS Adv Mater; 2021 Oct; 33(42):e2102586. PubMed ID: 34477249 [TBL] [Abstract][Full Text] [Related]
16. Terahertz-readable laser engraved marks as a novel solution for product traceability. Hoveida P; Phoulady A; Choi H; May N; Shahbazmohamadi S; Tavousi P Sci Rep; 2023 Aug; 13(1):12474. PubMed ID: 37528214 [TBL] [Abstract][Full Text] [Related]
17. Traceable Optical Physical Unclonable Functions Based on Germanium Vacancy in Diamonds. Jiao F; Lin C; Dong L; Wu Y; Xiao Y; Zhang Z; Sun J; Zhao WB; Li S; Yang X; Ni P; Wang L; Shan CX ACS Appl Mater Interfaces; 2024 Aug; 16(33):44328-44339. PubMed ID: 39106123 [TBL] [Abstract][Full Text] [Related]
18. An optical authentication system based on imaging of excitation-selected lanthanide luminescence. Carro-Temboury MR; Arppe R; Vosch T; Sørensen TJ Sci Adv; 2018 Jan; 4(1):e1701384. PubMed ID: 29387788 [TBL] [Abstract][Full Text] [Related]
19. Physical Unclonable Functions Based on Photothermal Effect of Gold Nanoparticles. Wang Z; Wang H; Li F; Gao X; Shao Y ACS Appl Mater Interfaces; 2024 Apr; 16(14):17954-17964. PubMed ID: 38562008 [TBL] [Abstract][Full Text] [Related]
20. Scalable Photo-Responsive Physical Unclonable Functions via Particle Kinetics. Jung U; Beak CJ; Kim K; Na JH; Lee SH ACS Nano; 2024 Oct; 18(40):27642-27653. PubMed ID: 39344103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]