These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 39217252)
1. Risk assessment of karst water inrush in tunnel engineering based on improved game theory and uncertainty measure theory. Zhao R; Zhang L; Hu A; Kai S; Fan C Sci Rep; 2024 Aug; 14(1):20284. PubMed ID: 39217252 [TBL] [Abstract][Full Text] [Related]
2. Development and experimental validation of analytical models for water and mud inrushes through a filled karst conduit. Wu X; Yang X; Jing H Sci Rep; 2024 Jun; 14(1):14969. PubMed ID: 38942795 [TBL] [Abstract][Full Text] [Related]
3. Forecasting and prevention of water inrush during the excavation process of a diversion tunnel at the Jinping II Hydropower Station, China. Hou TX; Yang XG; Xing HG; Huang KX; Zhou JW Springerplus; 2016; 5(1):700. PubMed ID: 27347472 [TBL] [Abstract][Full Text] [Related]
4. A novel intelligent displacement prediction model of karst tunnels. Fu HY; Zhao YY; Ding HJ; Rao YK; Yang T; Zhou MZ Sci Rep; 2022 Oct; 12(1):16983. PubMed ID: 36216860 [TBL] [Abstract][Full Text] [Related]
5. Safety risk assessment of loess tunnel construction under complex environment based on game theory-cloud model. Han B; Jia W; Feng W; Liu L; Zhang Z; Guo Y; Niu M Sci Rep; 2023 Jul; 13(1):12249. PubMed ID: 37507531 [TBL] [Abstract][Full Text] [Related]
6. Nonlinear seepage erosion model of water inrush considering particle size distribution of karst collapse column and its engineering applications. Yang B; Shi W; Yang X Sci Rep; 2022 Oct; 12(1):17078. PubMed ID: 36224277 [TBL] [Abstract][Full Text] [Related]
7. Study of the development patterns of water-conducting fracture zones under karst aquifers and the mechanism of water inrush. Zheng L; Wang X; Lan H; Ren W; Tian Y; Xu J; Tian S Sci Rep; 2024 Sep; 14(1):20790. PubMed ID: 39242957 [TBL] [Abstract][Full Text] [Related]
8. Tunnel collapse risk assessment based on improved quantitative theory III and EW-AHP coupling weight. Li L; Ni B; Zhang S; Qiang Y; Zhang Z; Zhou L; Liu G; Cheng L Sci Rep; 2022 Sep; 12(1):16054. PubMed ID: 36163228 [TBL] [Abstract][Full Text] [Related]
9. Mine Water Inrush Risk Assessment Evaluation Based on the GIS and Combination Weight-Cloud Model: A Case Study. Liu W; Han M; Meng X; Qin Y ACS Omega; 2021 Dec; 6(48):32671-32681. PubMed ID: 34901616 [TBL] [Abstract][Full Text] [Related]
10. Effect of particle erosion on mining-induced water inrush hazard of karst collapse pillar. Ma D; Wang J; Li Z Environ Sci Pollut Res Int; 2019 Jul; 26(19):19719-19728. PubMed ID: 31090004 [TBL] [Abstract][Full Text] [Related]
11. Evaluation on the Risk of Water Inrush Due to Roof Bed Separation Based on Improved Set Pair Analysis-Variable Fuzzy Sets. Li X; Zhang W; Wang X; Wang Z; Pang C ACS Omega; 2022 Mar; 7(11):9430-9442. PubMed ID: 35350366 [TBL] [Abstract][Full Text] [Related]
12. A non-linear flow model for the flow behavior of water inrush induced by the karst collapse column. Hou X; Shi W; Yang T RSC Adv; 2018 Jan; 8(3):1656-1665. PubMed ID: 35540924 [TBL] [Abstract][Full Text] [Related]
13. Gray Evaluation of Water Inrush Risk in Deep Mining Floor. Qu X; Yu X; Qu X; Qiu M; Gao W ACS Omega; 2021 Jun; 6(22):13970-13986. PubMed ID: 34124422 [TBL] [Abstract][Full Text] [Related]
14. A Multifactor Quantitative Assessment Model for Safe Mining after Roof Drainage in the Liangshuijing Coal Mine. Gao C; Wang D; Liu K; Deng G; Li J; Jie B ACS Omega; 2022 Aug; 7(30):26437-26454. PubMed ID: 35936470 [TBL] [Abstract][Full Text] [Related]
15. Optimizing internal control in public hospital supply chain: a game theory-based approach. Yu Z Front Public Health; 2023; 11():1240757. PubMed ID: 37920582 [TBL] [Abstract][Full Text] [Related]
16. Research on programmatic multi-attribute decision-making problem: An example of bridge pile foundation project in karst area. Lu Y; Nie C; Zhou D; Shi L PLoS One; 2023; 18(12):e0295296. PubMed ID: 38048300 [TBL] [Abstract][Full Text] [Related]
17. Improved Combination Weighted Prediction Model of Aquifer Water Abundance Based on a Cloud Model. Cheng W; Dong F; Tang R; Yin H; Shi L; Zhai Y; Li X ACS Omega; 2022 Oct; 7(40):35840-35850. PubMed ID: 36249369 [TBL] [Abstract][Full Text] [Related]
18. Dynamic risk evaluation method of collapse in the whole construction of shallow buried tunnels and engineering application. Li Z; Wang S; Cao Y; Ding R Math Biosci Eng; 2022 Feb; 19(4):4300-4319. PubMed ID: 35341299 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the impacts of tunnel excavation on karst groundwater and dependent geo-environment using hydrological observation and numerical simulation: a case from karst anticline mountains of southeastern Sichuan Basin, China. Chen S; Peng H; Yang C; Chen B; Chen L Environ Sci Pollut Res Int; 2021 Aug; 28(30):40203-40216. PubMed ID: 33932214 [TBL] [Abstract][Full Text] [Related]
20. Research on the relation between hydro-chemical and geological characteristics in karst area: Case study in Zhong Liang Mountain, Southwest China. Jing Z; Ping YL; Qing X; Hang G; Xing B; Jun WM; Peng C Water Environ Res; 2024 Jul; 96(7):e11062. PubMed ID: 38982838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]