These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model. Oliver P; Peralta-Gil M; Tabche ML; Merino E BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672 [TBL] [Abstract][Full Text] [Related]
3. UniBind: maps of high-confidence direct TF-DNA interactions across nine species. Puig RR; Boddie P; Khan A; Castro-Mondragon JA; Mathelier A BMC Genomics; 2021 Jun; 22(1):482. PubMed ID: 34174819 [TBL] [Abstract][Full Text] [Related]
4. Most of the tight positional conservation of transcription factor binding sites near the transcription start site reflects their co-localization within regulatory modules. Acevedo-Luna N; Mariño-Ramírez L; Halbert A; Hansen U; Landsman D; Spouge JL BMC Bioinformatics; 2016 Nov; 17(1):479. PubMed ID: 27871221 [TBL] [Abstract][Full Text] [Related]
5. LASAGNA: a novel algorithm for transcription factor binding site alignment. Lee C; Huang CH BMC Bioinformatics; 2013 Mar; 14():108. PubMed ID: 23522376 [TBL] [Abstract][Full Text] [Related]
6. Contribution of nucleosome binding preferences and co-occurring DNA sequences to transcription factor binding. He X; Chatterjee R; John S; Bravo H; Sathyanarayana BK; Biddie SC; FitzGerald PC; Stamatoyannopoulos JA; Hager GL; Vinson C BMC Genomics; 2013 Jun; 14():428. PubMed ID: 23805837 [TBL] [Abstract][Full Text] [Related]
7. TRACE: transcription factor footprinting using chromatin accessibility data and DNA sequence. Ouyang N; Boyle AP Genome Res; 2020 Jul; 30(7):1040-1046. PubMed ID: 32660981 [TBL] [Abstract][Full Text] [Related]
8. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets. Ha N; Polychronidou M; Lohmann I PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209 [TBL] [Abstract][Full Text] [Related]
9. Discovering unknown human and mouse transcription factor binding sites and their characteristics from ChIP-seq data. Yu CP; Kuo CH; Nelson CW; Chen CA; Soh ZT; Lin JJ; Hsiao RX; Chang CY; Li WH Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33975951 [TBL] [Abstract][Full Text] [Related]
10. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility. Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606 [TBL] [Abstract][Full Text] [Related]
11. Identifying cooperative transcription factors in yeast using multiple data sources. Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499 [TBL] [Abstract][Full Text] [Related]
12. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment. Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817 [TBL] [Abstract][Full Text] [Related]
13. Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome. Kuznetsov VA; Singh O; Jenjaroenpun P BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S12. PubMed ID: 20158869 [TBL] [Abstract][Full Text] [Related]
14. DNA sequence and chromatin differentiate sequence-specific transcription factor binding in the human malaria parasite Plasmodium falciparum. Bonnell VA; Zhang Y; Brown AS; Horton J; Josling GA; Chiu TP; Rohs R; Mahony S; Gordân R; Llinás M Nucleic Acids Res; 2024 Sep; 52(17):10161-10179. PubMed ID: 38966997 [TBL] [Abstract][Full Text] [Related]
15. Improved linking of motifs to their TFs using domain information. Baumgarten N; Schmidt F; Schulz MH Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324 [TBL] [Abstract][Full Text] [Related]
16. A balancing act in transcription regulation by response regulators: titration of transcription factor activity by decoy DNA binding sites. Gao R; Helfant LJ; Wu T; Li Z; Brokaw SE; Stock AM Nucleic Acids Res; 2021 Nov; 49(20):11537-11549. PubMed ID: 34669947 [TBL] [Abstract][Full Text] [Related]
17. Identification of mammalian transcription factors that bind to inaccessible chromatin. Pop RT; Pisante A; Nagy D; Martin PCN; Mikheeva LA; Hayat A; Ficz G; Zabet NR Nucleic Acids Res; 2023 Sep; 51(16):8480-8495. PubMed ID: 37486787 [TBL] [Abstract][Full Text] [Related]
18. Analysis of Co-Associated Transcription Factors via Ordered Adjacency Differences on Motif Distribution. Pan G; Tang J; Guo F Sci Rep; 2017 Feb; 7():43597. PubMed ID: 28240320 [TBL] [Abstract][Full Text] [Related]
19. Uncovering uncharacterized binding of transcription factors from ATAC-seq footprinting data. Schultheis H; Bentsen M; Heger V; Looso M Sci Rep; 2024 Apr; 14(1):9275. PubMed ID: 38654130 [TBL] [Abstract][Full Text] [Related]
20. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data. Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]