These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 39217816)
1. Computerizing the first step of the two-step algorithm in dermoscopy: A convolutional neural network for differentiating melanocytic from non-melanocytic skin lesions. Winkler JK; Kommoss KS; Vollmer AS; Blum A; Stolz W; Kränke T; Hofmann-Wellenhof R; Enk A; Toberer F; Haenssle HA Eur J Cancer; 2024 Oct; 210():114297. PubMed ID: 39217816 [TBL] [Abstract][Full Text] [Related]
2. Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Haenssle HA; Fink C; Toberer F; Winkler J; Stolz W; Deinlein T; Hofmann-Wellenhof R; Lallas A; Emmert S; Buhl T; Zutt M; Blum A; Abassi MS; Thomas L; Tromme I; Tschandl P; Enk A; Rosenberger A; Ann Oncol; 2020 Jan; 31(1):137-143. PubMed ID: 31912788 [TBL] [Abstract][Full Text] [Related]
3. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Haenssle HA; Fink C; Schneiderbauer R; Toberer F; Buhl T; Blum A; Kalloo A; Hassen ABH; Thomas L; Enk A; Uhlmann L; ; Alt C; Arenbergerova M; Bakos R; Baltzer A; Bertlich I; Blum A; Bokor-Billmann T; Bowling J; Braghiroli N; Braun R; Buder-Bakhaya K; Buhl T; Cabo H; Cabrijan L; Cevic N; Classen A; Deltgen D; Fink C; Georgieva I; Hakim-Meibodi LE; Hanner S; Hartmann F; Hartmann J; Haus G; Hoxha E; Karls R; Koga H; Kreusch J; Lallas A; Majenka P; Marghoob A; Massone C; Mekokishvili L; Mestel D; Meyer V; Neuberger A; Nielsen K; Oliviero M; Pampena R; Paoli J; Pawlik E; Rao B; Rendon A; Russo T; Sadek A; Samhaber K; Schneiderbauer R; Schweizer A; Toberer F; Trennheuser L; Vlahova L; Wald A; Winkler J; Wölbing P; Zalaudek I Ann Oncol; 2018 Aug; 29(8):1836-1842. PubMed ID: 29846502 [TBL] [Abstract][Full Text] [Related]
4. Skin lesions of face and scalp - Classification by a market-approved convolutional neural network in comparison with 64 dermatologists. Haenssle HA; Winkler JK; Fink C; Toberer F; Enk A; Stolz W; Deinlein T; Hofmann-Wellenhof R; Kittler H; Tschandl P; Rosendahl C; Lallas A; Blum A; Abassi MS; Thomas L; Tromme I; Rosenberger A; Eur J Cancer; 2021 Feb; 144():192-199. PubMed ID: 33370644 [TBL] [Abstract][Full Text] [Related]
5. Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas. Fink C; Blum A; Buhl T; Mitteldorf C; Hofmann-Wellenhof R; Deinlein T; Stolz W; Trennheuser L; Cussigh C; Deltgen D; Winkler JK; Toberer F; Enk A; Rosenberger A; Haenssle HA J Eur Acad Dermatol Venereol; 2020 Jun; 34(6):1355-1361. PubMed ID: 31856342 [TBL] [Abstract][Full Text] [Related]
6. Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition. Winkler JK; Sies K; Fink C; Toberer F; Enk A; Abassi MS; Fuchs T; Haenssle HA Eur J Cancer; 2021 Mar; 145():146-154. PubMed ID: 33465706 [TBL] [Abstract][Full Text] [Related]
7. Assessment of Diagnostic Performance of Dermatologists Cooperating With a Convolutional Neural Network in a Prospective Clinical Study: Human With Machine. Winkler JK; Blum A; Kommoss K; Enk A; Toberer F; Rosenberger A; Haenssle HA JAMA Dermatol; 2023 Jun; 159(6):621-627. PubMed ID: 37133847 [TBL] [Abstract][Full Text] [Related]
8. Diagnostic performance of augmented intelligence with 2D and 3D total body photography and convolutional neural networks in a high-risk population for melanoma under real-world conditions: A new era of skin cancer screening? Cerminara SE; Cheng P; Kostner L; Huber S; Kunz M; Maul JT; Böhm JS; Dettwiler CF; Geser A; Jakopović C; Stoffel LM; Peter JK; Levesque M; Navarini AA; Maul LV Eur J Cancer; 2023 Sep; 190():112954. PubMed ID: 37453242 [TBL] [Abstract][Full Text] [Related]
12. Deep neural networks are superior to dermatologists in melanoma image classification. Brinker TJ; Hekler A; Enk AH; Berking C; Haferkamp S; Hauschild A; Weichenthal M; Klode J; Schadendorf D; Holland-Letz T; von Kalle C; Fröhling S; Schilling B; Utikal JS Eur J Cancer; 2019 Sep; 119():11-17. PubMed ID: 31401469 [TBL] [Abstract][Full Text] [Related]
13. Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017. Marchetti MA; Liopyris K; Dusza SW; Codella NCF; Gutman DA; Helba B; Kalloo A; Halpern AC; J Am Acad Dermatol; 2020 Mar; 82(3):622-627. PubMed ID: 31306724 [TBL] [Abstract][Full Text] [Related]
14. Past and present of computer-assisted dermoscopic diagnosis: performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions. Sies K; Winkler JK; Fink C; Bardehle F; Toberer F; Buhl T; Enk A; Blum A; Rosenberger A; Haenssle HA Eur J Cancer; 2020 Aug; 135():39-46. PubMed ID: 32534243 [TBL] [Abstract][Full Text] [Related]
15. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Fröhling S; Utikal JS; von Kalle C; Eur J Cancer; 2019 Apr; 111():148-154. PubMed ID: 30852421 [TBL] [Abstract][Full Text] [Related]
16. Observational study investigating the level of support from a convolutional neural network in face and scalp lesions deemed diagnostically 'unclear' by dermatologists. Kommoss KS; Winkler JK; Mueller-Christmann C; Bardehle F; Toberer F; Stolz W; Kraenke T; Hofmann-Wellenhof R; Blum A; Enk A; Rosenberger A; Haenssle HA Eur J Cancer; 2023 May; 185():53-60. PubMed ID: 36963352 [TBL] [Abstract][Full Text] [Related]
17. Association Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma Recognition. Winkler JK; Fink C; Toberer F; Enk A; Deinlein T; Hofmann-Wellenhof R; Thomas L; Lallas A; Blum A; Stolz W; Haenssle HA JAMA Dermatol; 2019 Oct; 155(10):1135-1141. PubMed ID: 31411641 [TBL] [Abstract][Full Text] [Related]
18. Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study. Maron RC; Utikal JS; Hekler A; Hauschild A; Sattler E; Sondermann W; Haferkamp S; Schilling B; Heppt MV; Jansen P; Reinholz M; Franklin C; Schmitt L; Hartmann D; Krieghoff-Henning E; Schmitt M; Weichenthal M; von Kalle C; Fröhling S; Brinker TJ J Med Internet Res; 2020 Sep; 22(9):e18091. PubMed ID: 32915161 [TBL] [Abstract][Full Text] [Related]
19. Deep learning-based, computer-aided classifier developed with dermoscopic images shows comparable performance to 164 dermatologists in cutaneous disease diagnosis in the Chinese population. Wang SQ; Zhang XY; Liu J; Tao C; Zhu CY; Shu C; Xu T; Jin HZ Chin Med J (Engl); 2020 Sep; 133(17):2027-2036. PubMed ID: 32826613 [TBL] [Abstract][Full Text] [Related]
20. Dermoscopy, with and without visual inspection, for diagnosing melanoma in adults. Dinnes J; Deeks JJ; Chuchu N; Ferrante di Ruffano L; Matin RN; Thomson DR; Wong KY; Aldridge RB; Abbott R; Fawzy M; Bayliss SE; Grainge MJ; Takwoingi Y; Davenport C; Godfrey K; Walter FM; Williams HC; Cochrane Database Syst Rev; 2018 Dec; 12(12):CD011902. PubMed ID: 30521682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]