These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 39218178)

  • 1. 3D printed biopolymer/black phosphorus nanoscaffolds for bone implants: A review.
    Wu N; Li J; Li X; Wang R; Zhang L; Liu Z; Jiao T
    Int J Biol Macromol; 2024 Nov; 279(Pt 3):135227. PubMed ID: 39218178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing of inorganic-biopolymer composites for bone regeneration.
    van der Heide D; Cidonio G; Stoddart MJ; D'Este M
    Biofabrication; 2022 Sep; 14(4):. PubMed ID: 36007496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic
    Li L; Shi J; Ma K; Jin J; Wang P; Liang H; Cao Y; Wang X; Jiang Q
    J Adv Res; 2021 May; 30():75-84. PubMed ID: 34026288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives.
    Cheng L; Suresh K S; He H; Rajput RS; Feng Q; Ramesh S; Wang Y; Krishnan S; Ostrovidov S; Camci-Unal G; Ramalingam M
    Int J Nanomedicine; 2021; 16():4289-4319. PubMed ID: 34211272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications.
    Yu H; Xu M; Duan Q; Li Y; Liu Y; Song L; Cheng L; Ying J; Zhao D
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38697199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural medicine delivery from 3D printed bone substitutes.
    Bose S; Sarkar N; Jo Y
    J Control Release; 2024 Jan; 365():848-875. PubMed ID: 37734674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Application of Three-Dimensional-Printed Hydrogels in Bone Tissue Engineering.
    Zhang C; Shi T; Wu D; Hu D; Li W; Fei J; Liu W
    Tissue Eng Part B Rev; 2024 Oct; 30(5):492-506. PubMed ID: 38131273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization.
    Babilotte J; Guduric V; Le Nihouannen D; Naveau A; Fricain JC; Catros S
    J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2579-2595. PubMed ID: 30848068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silkworm-inspired electrohydrodynamic jet 3D printing of composite scaffold with ordered cell scale fibers for bone tissue engineering.
    Li K; Zhang F; Wang D; Qiu Q; Liu M; Yu A; Cui Y
    Int J Biol Macromol; 2021 Mar; 172():124-132. PubMed ID: 33418047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical and in vitro study of 3D printed silk fibroin and bone-based composites biomaterials for bone implant application.
    Ansari AI; Ahmad Sheikh N; Kumar N
    Proc Inst Mech Eng H; 2024 Jul; 238(7):774-792. PubMed ID: 39045911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges in Three-Dimensional Printing of Bone Substitutes.
    Masaeli R; Zandsalimi K; Rasoulianboroujeni M; Tayebi L
    Tissue Eng Part B Rev; 2019 Oct; 25(5):387-397. PubMed ID: 31144596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, properties, and bioactivity of 3D printed PAEKs for implant applications: A systematic review.
    Basgul C; Spece H; Sharma N; Thieringer FM; Kurtz SM
    J Biomed Mater Res B Appl Biomater; 2021 Nov; 109(11):1924-1941. PubMed ID: 33856114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.
    Trachtenberg JE; Placone JK; Smith BT; Fisher JP; Mikos AG
    J Biomater Sci Polym Ed; 2017 Apr; 28(6):532-554. PubMed ID: 28125380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-Printed Silk Proteins for Bone Tissue Regeneration and Associated Immunomodulation.
    Waidi YO; Debnath S; Datta S; Chatterjee K
    Biomacromolecules; 2024 Sep; 25(9):5512-5540. PubMed ID: 39133748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four-Dimensional Printing and Shape Memory Materials in Bone Tissue Engineering.
    Zhang X; Yang Y; Yang Z; Ma R; Aimaijiang M; Xu J; Zhang Y; Zhou Y
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Dual Effect of 3D-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors.
    Ma Y; Zhang B; Sun H; Liu D; Zhu Y; Zhu Q; Liu X
    Int J Nanomedicine; 2023; 18():293-305. PubMed ID: 36683596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration.
    Rodriguez RU; Kemper N; Breathwaite E; Dutta SM; Hsu EL; Hsu WK; Francis MP
    Biofabrication; 2016 Jul; 8(3):035007. PubMed ID: 27458901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.