These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 392184)

  • 21. Type I collagen gel induces Madin-Darby canine kidney cells to become fusiform in shape and lose apical-basal polarity.
    Zuk A; Matlin KS; Hay ED
    J Cell Biol; 1989 Mar; 108(3):903-19. PubMed ID: 2537838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Electron microscopic study of 3H-leucine transport between the internal body environment and the enteral environment].
    Nadtochiĭ VV; Baklykova NM; Brodskiĭ RA; Gal'perin IuM
    Tsitologiia; 1983 Jul; 25(7):748-53. PubMed ID: 6623634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of paracellular pathways in isotonic fluid transport.
    Schultz SG
    Yale J Biol Med; 1977; 50(2):99-113. PubMed ID: 331697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protease-resistant integral brush border membrane proteins and their relationship to sodium-dependent transport of D-glucose and L-alanine.
    Malathi P; Preiser H; Crane RK
    Ann N Y Acad Sci; 1980; 358():253-66. PubMed ID: 7011145
    [No Abstract]   [Full Text] [Related]  

  • 25. Tight junction dynamics: is paracellular transport regulated?
    Madara JL
    Cell; 1988 May; 53(4):497-8. PubMed ID: 3286009
    [No Abstract]   [Full Text] [Related]  

  • 26. Localization of alkaline phosphatase and proteins related to intercellular junctions in rat hepatoma cell line McA-RH 7777.
    Chida K; Taguchi M
    J Histochem Cytochem; 2004 Jul; 52(7):979-83. PubMed ID: 15208364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transepithelial transport of a viral membrane glycoprotein implanted into the apical plasma membrane of Madin-Darby canine kidney cells. I. Morphological evidence.
    Matlin K; Bainton DF; Pesonen M; Louvard D; Genty N; Simons K
    J Cell Biol; 1983 Sep; 97(3):627-37. PubMed ID: 6885914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An ultrastructural study of the glomerular slit diaphragm in aminonucleoside nephrosis.
    Ryan GB; Rodewald R; Karnovsky MJ
    Lab Invest; 1975 Nov; 33(5):461-8. PubMed ID: 1186127
    [No Abstract]   [Full Text] [Related]  

  • 29. The role of SH-groups in the concentrative transport of D-glucose into brush border membrane vesicles.
    Biber J; Hauser H
    FEBS Lett; 1979 Dec; 108(2):451-6. PubMed ID: 520588
    [No Abstract]   [Full Text] [Related]  

  • 30. Role of metallothionein in transport of heavy metals.
    Foulkes EC
    Dev Toxicol Environ Sci; 1982; 9():131-40. PubMed ID: 7053962
    [No Abstract]   [Full Text] [Related]  

  • 31. Transport of carboxylic acids by renal membrane vesicles.
    Wright EM
    Annu Rev Physiol; 1985; 47():127-41. PubMed ID: 3888071
    [No Abstract]   [Full Text] [Related]  

  • 32. On the ovarian bursa of the golden hamster. II. Intercellular connections in the bursal epithelium and passage of ferritin from the cavity into lymphatics.
    Nakatani T; Shinohara H; Matsuda T
    J Anat; 1986 Oct; 148():1-12. PubMed ID: 3693080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nephrotoxicity of metals: effects on plasma membrane function.
    Berndt WO; Ansari RA
    Toxicol Lett; 1990 Sep; 53(1-2):87-92. PubMed ID: 2219191
    [No Abstract]   [Full Text] [Related]  

  • 34. Brush-border-membrane disease.
    Crane RK
    Biochem Soc Trans; 1980 Dec; 8(6):688-90. PubMed ID: 7461252
    [No Abstract]   [Full Text] [Related]  

  • 35. Single proteins might have dual but related functions in intracellular and extracellular microenvironments.
    Radisky DC; Stallings-Mann M; Hirai Y; Bissell MJ
    Nat Rev Mol Cell Biol; 2009 Mar; 10(3):228-34. PubMed ID: 19190671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Epithelial transport of amino acids].
    Veselý J
    Cesk Fysiol; 1980; 29(3):215-32. PubMed ID: 6994903
    [No Abstract]   [Full Text] [Related]  

  • 37. Intestinal uptake and transmembrane transport systems of intact GSH; characteristics and possible biological role.
    Vincenzini MT; Favilli F; Iantomasi T
    Biochim Biophys Acta; 1992 Mar; 1113(1):13-23. PubMed ID: 1550859
    [No Abstract]   [Full Text] [Related]  

  • 38. Relationship between renal phosphate reabsorption and renal brush-border membrane transport.
    Kempson SA; Berndt TJ; Turner ST; Zimmerman D; Knox F; Dousa TP
    Am J Physiol; 1983 Feb; 244(2):R216-23. PubMed ID: 6130706
    [No Abstract]   [Full Text] [Related]  

  • 39. Transport of 5-oxoproline into rabbit renal brush border membrane vesicles.
    Ganapathy V; Roesel RA; Leibach FH
    Biochem Biophys Res Commun; 1982 Mar; 105(1):28-35. PubMed ID: 7092855
    [No Abstract]   [Full Text] [Related]  

  • 40. Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium.
    Achler C; Filmer D; Merte C; Drenckhahn D
    J Cell Biol; 1989 Jul; 109(1):179-89. PubMed ID: 2568363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.