These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 39218592)

  • 1. [A deep transfer learning approach for cross-subject recognition of mental tasks based on functional near-infrared spectroscopy].
    Zhang Y; Liu D; Gao F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):673-683. PubMed ID: 39218592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CGAN-rIRN: a data-augmented deep learning approach to accurate classification of mental tasks for a fNIRS-based brain-computer interface.
    Zhang Y; Liu D; Li T; Zhang P; Li Z; Gao F
    Biomed Opt Express; 2023 Jun; 14(6):2934-2954. PubMed ID: 37342712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subject-Independent Functional Near-Infrared Spectroscopy-Based Brain-Computer Interfaces Based on Convolutional Neural Networks.
    Kwon J; Im CH
    Front Hum Neurosci; 2021; 15():646915. PubMed ID: 33776674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Classification Accuracy with Integrated Contextual Gate Network: Deep Learning Approach for Functional Near-Infrared Spectroscopy Brain-Computer Interface Application.
    Akhter J; Naseer N; Nazeer H; Khan H; Mirtaheri P
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CT-Net: an interpretable CNN-Transformer fusion network for fNIRS classification.
    Liao L; Lu J; Wang L; Zhang Y; Gao D; Wang M
    Med Biol Eng Comput; 2024 Oct; 62(10):3233-3247. PubMed ID: 38816665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification Algorithm for fNIRS-based Brain Signals Using Convolutional Neural Network with Spatiotemporal Feature Extraction Mechanism.
    Qin Y; Li B; Wang W; Shi X; Peng C; Lu Y
    Neuroscience; 2024 Mar; 542():59-68. PubMed ID: 38369007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Transfer Learning in EEG Decoding Based on Brain-Computer Interfaces: A Review.
    Zhang K; Xu G; Zheng X; Li H; Zhang S; Yu Y; Liang R
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rethinking Delayed Hemodynamic Responses for fNIRS Classification.
    Wang Z; Fang J; Zhang J
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4528-4538. PubMed ID: 37934649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces.
    Aydin EA
    Comput Methods Programs Biomed; 2020 Oct; 195():105535. PubMed ID: 32534382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGANet: fNIRS-Guided Attention Network for Hybrid EEG-fNIRS Brain-Computer Interfaces.
    Kwak Y; Song WJ; Kim SE
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():329-339. PubMed ID: 35130163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding working-memory load during
    Kothe C; Hanada G; Mullen S; Mullen T
    J Neural Eng; 2024 Sep; 21(5):. PubMed ID: 39178905
    [No Abstract]   [Full Text] [Related]  

  • 12. Magnetoencephalogram-based brain-computer interface for hand-gesture decoding using deep learning.
    Bu Y; Harrington DL; Lee RR; Shen Q; Angeles-Quinto A; Ji Z; Hansen H; Hernandez-Lucas J; Baumgartner J; Song T; Nichols S; Baker D; Rao R; Lerman I; Lin T; Tu XM; Huang M
    Cereb Cortex; 2023 Jul; 33(14):8942-8955. PubMed ID: 37183188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating deep learning for fNIRS based BCI.
    Hennrich J; Herff C; Heger D; Schultz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2844-7. PubMed ID: 26736884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-Inception: A Novel Deep Convolutional Neural Network for Assistive ERP-Based Brain-Computer Interfaces.
    Santamaria-Vazquez E; Martinez-Cagigal V; Vaquerizo-Villar F; Hornero R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2773-2782. PubMed ID: 33378260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined real-time fMRI and real time fNIRS brain computer interface (BCI): Training of volitional wrist extension after stroke, a case series pilot study.
    Matarasso AK; Rieke JD; White K; Yusufali MM; Daly JJ
    PLoS One; 2021; 16(5):e0250431. PubMed ID: 33956845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual model transfer learning to compensate for individual variability in brain-computer interface.
    Kim JS; Kim H; Chung CK; Kim JS
    Comput Methods Programs Biomed; 2024 Sep; 254():108294. PubMed ID: 38943984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Assessment of Resting-State for Mild Cognitive Impairment Detection: A Functional Near-Infrared Spectroscopy and Deep Learning Approach.
    Yang D; Hong KS
    J Alzheimers Dis; 2021; 80(2):647-663. PubMed ID: 33579839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.
    Chiarelli AM; Croce P; Merla A; Zappasodi F
    J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks.
    Hamid H; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding of semantic categories of imagined concepts of animals and tools in fNIRS.
    Rybář M; Poli R; Daly I
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33780916
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.