These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 39218601)

  • 1. [Lower limb joint contact forces and ground reaction forces analysis based on Azure Kinect motion capture].
    Peng Y; Wang L; Chen Z; Dang X; Chen F; Li G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):751-757. PubMed ID: 39218601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ground reaction force and joint moment estimation during gait using an Azure Kinect-driven musculoskeletal modeling approach.
    Ripic Z; Kuenze C; Andersen MS; Theodorakos I; Signorile J; Eltoukhy M
    Gait Posture; 2022 Jun; 95():49-55. PubMed ID: 35428024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smartphone videos-driven musculoskeletal multibody dynamics modelling workflow to estimate the lower limb joint contact forces and ground reaction forces.
    Peng Y; Wang W; Wang L; Zhou H; Chen Z; Zhang Q; Li G
    Med Biol Eng Comput; 2024 Dec; 62(12):3841-3853. PubMed ID: 39046692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2.
    Yeung LF; Yang Z; Cheng KC; Du D; Tong RK
    Gait Posture; 2021 Jun; 87():19-26. PubMed ID: 33878509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity of time series kinematical data as measured by a markerless motion capture system on a flatland for gait assessment.
    Tanaka R; Takimoto H; Yamasaki T; Higashi A
    J Biomech; 2018 Apr; 71():281-285. PubMed ID: 29475751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait.
    Moissenet F; Chèze L; Dumas R
    J Biomech; 2014 Jan; 47(1):50-8. PubMed ID: 24210475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower limb joint forces during walking on the level and slopes at different inclinations.
    Alexander N; Schwameder H
    Gait Posture; 2016 Mar; 45():137-42. PubMed ID: 26979896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of predicted kinetic variables between Parkinson's disease patients and healthy age-matched control using a depth sensor-driven full-body musculoskeletal model.
    Oh J; Eltoukhy M; Kuenze C; Andersen MS; Signorile JF
    Gait Posture; 2020 Feb; 76():151-156. PubMed ID: 31862662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inclusion of a skeletal model partly improves the reliability of lower limb joint angles derived from a markerless depth camera.
    Collings TJ; Devaprakash D; Pizzolato C; Lloyd DG; Barrett RS; Lenton GK; Thomeer LT; Bourne MN
    J Biomech; 2024 Jun; 170():112160. PubMed ID: 38824704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials.
    Kia M; Stylianou AP; Guess TM
    Med Eng Phys; 2014 Mar; 36(3):335-44. PubMed ID: 24418154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromyography-Driven Forward Dynamics Simulation to Estimate In Vivo Joint Contact Forces During Normal, Smooth, and Bouncy Gaits.
    Razu SS; Guess TM
    J Biomech Eng; 2018 Jul; 140(7):0710121-8. PubMed ID: 29164228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Azure Kinect and optical retroreflective motion capture for kinematic and spatiotemporal evaluation of the sit-to-stand test.
    Thomas J; Hall JB; Bliss R; Guess TM
    Gait Posture; 2022 May; 94():153-159. PubMed ID: 35334335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computationally efficient strategy to estimate muscle forces in a finite element musculoskeletal model of the lower limb.
    Navacchia A; Hume DR; Rullkoetter PJ; Shelburne KB
    J Biomech; 2019 Feb; 84():94-102. PubMed ID: 30616983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Azure Kinect overground gait spatiotemporal parameters to marker based optical motion capture.
    Guess TM; Bliss R; Hall JB; Kiselica AM
    Gait Posture; 2022 Jul; 96():130-136. PubMed ID: 35635988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of ground reaction forces for Parkinson's disease patients using a kinect-driven musculoskeletal gait analysis model.
    Eltoukhy M; Kuenze C; Andersen MS; Oh J; Signorile J
    Med Eng Phys; 2017 Dec; 50():75-82. PubMed ID: 29102274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational model for dynamic analysis of the human gait.
    Vimieiro C; Andrada E; Witte H; Pinotti M
    Comput Methods Biomech Biomed Engin; 2015; 18(7):799-804. PubMed ID: 24156601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ground reaction forces and lower-limb joint kinetics of turning gait in typically developing children.
    Dixon PC; Stebbins J; Theologis T; Zavatsky AB
    J Biomech; 2014 Nov; 47(15):3726-33. PubMed ID: 25311452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower limb joint motion and muscle force in treadmill and over-ground exercise.
    Yao J; Guo N; Xiao Y; Li Z; Li Y; Pu F; Fan Y
    Biomed Eng Online; 2019 Aug; 18(1):89. PubMed ID: 31438944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.
    Guess TM; Stylianou AP; Kia M
    J Biomech Eng; 2014 Feb; 136(2):021032. PubMed ID: 24389997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the Drop Vertical Jump Tracking Performance of the Azure Kinect to the Kinect V2.
    Abdelnour P; Zhao KY; Babouras A; Corban JPAH; Karatzas N; Fevens T; Martineau PA
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.