These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Extended Dynamic Mode Decomposition with Invertible Dictionary Learning. Jin Y; Hou L; Zhong S Neural Netw; 2024 May; 173():106177. PubMed ID: 38382398 [TBL] [Abstract][Full Text] [Related]
9. Two methods to approximate the Koopman operator with a reservoir computer. Gulina M; Mauroy A Chaos; 2021 Feb; 31(2):023116. PubMed ID: 33653036 [TBL] [Abstract][Full Text] [Related]
10. Enhancing predictive capabilities in data-driven dynamical modeling with automatic differentiation: Koopman and neural ODE approaches. Ricardo Constante-Amores C; Linot AJ; Graham MD Chaos; 2024 Apr; 34(4):. PubMed ID: 38572942 [TBL] [Abstract][Full Text] [Related]
11. Generalizing Koopman Theory to Allow for Inputs and Control. Proctory JL; Bruntonz SL; Kutzx JN SIAM J Appl Dyn Syst; 2018; 17(1):909-930. PubMed ID: 33584153 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear model reduction to fractional and mixed-mode spectral submanifolds. Haller G; Kaszás B; Liu A; Axås J Chaos; 2023 Jun; 33(6):. PubMed ID: 37307165 [TBL] [Abstract][Full Text] [Related]
13. Principal component trajectories for modeling spectrally continuous dynamics as forced linear systems. Dylewsky D; Kaiser E; Brunton SL; Kutz JN Phys Rev E; 2022 Jan; 105(1-2):015312. PubMed ID: 35193205 [TBL] [Abstract][Full Text] [Related]
14. Bagging, optimized dynamic mode decomposition for robust, stable forecasting with spatial and temporal uncertainty quantification. Sashidhar D; Kutz JN Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210199. PubMed ID: 35719072 [TBL] [Abstract][Full Text] [Related]