These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 39220405)
1. 3D-printed aerogels as theranostic implants monitored by fluorescence bioimaging. Iglesias-Mejuto A; Pinto R; Faísca P; Catarino J; Rocha J; Durães L; Gaspar MM; Reis CP; García-González CA Bioact Mater; 2024 Nov; 41():471-484. PubMed ID: 39220405 [TBL] [Abstract][Full Text] [Related]
2. 3D-Printed, Dual Crosslinked and Sterile Aerogel Scaffolds for Bone Tissue Engineering. Iglesias-Mejuto A; García-González CA Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335542 [TBL] [Abstract][Full Text] [Related]
3. Vancomycin-loaded methylcellulose aerogel scaffolds for advanced bone tissue engineering. Iglesias-Mejuto A; Magariños B; Ferreira-Gonçalves T; Starbird-Pérez R; Álvarez-Lorenzo C; Reis CP; Ardao I; García-González CA Carbohydr Polym; 2024 Jan; 324():121536. PubMed ID: 37985110 [TBL] [Abstract][Full Text] [Related]
4. Histological evaluation of the biocompatibility of polyurea crosslinked silica aerogel implants in a rat model: a pilot study. Sabri F; Boughter JD; Gerth D; Skalli O; Phung TC; Tamula GR; Leventis N PLoS One; 2012; 7(12):e50686. PubMed ID: 23251378 [TBL] [Abstract][Full Text] [Related]
5. 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering. Iglesias-Mejuto A; García-González CA Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112525. PubMed ID: 34857304 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of Highly Luminescent Silica-Coated Upconversion Nanoparticles from Lanthanide Oxides or Nitrates Using Co-Precipitation and Sol-Gel Methods. Iglesias-Mejuto A; Lamy-Mendes A; Pina J; Costa BFO; García-González CA; Durães L Gels; 2023 Dec; 10(1):. PubMed ID: 38247736 [TBL] [Abstract][Full Text] [Related]
7. Sterile and Dual-Porous Aerogels Scaffolds Obtained through a Multistep Supercritical CO₂-Based Approach. Santos-Rosales V; Ardao I; Alvarez-Lorenzo C; Ribeiro N; Oliveira AL; García-González CA Molecules; 2019 Mar; 24(5):. PubMed ID: 30823685 [TBL] [Abstract][Full Text] [Related]
8. Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds. Osorio DA; Lee BEJ; Kwiecien JM; Wang X; Shahid I; Hurley AL; Cranston ED; Grandfield K Acta Biomater; 2019 Mar; 87():152-165. PubMed ID: 30710708 [TBL] [Abstract][Full Text] [Related]
10. Three-Dimensional-Printed Silica Aerogels for Thermal Insulation by Directly Writing Temperature-Induced Solidifiable Inks. Wang L; Feng J; Luo Y; Zhou Z; Jiang Y; Luo X; Xu L; Li L; Feng J ACS Appl Mater Interfaces; 2021 Sep; 13(34):40964-40975. PubMed ID: 34424660 [TBL] [Abstract][Full Text] [Related]
11. Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure-An Approach towards 3D Printing of Aerogels. Maleki H; Montes S; Hayati-Roodbari N; Putz F; Huesing N ACS Appl Mater Interfaces; 2018 Jul; 10(26):22718-22730. PubMed ID: 29864277 [TBL] [Abstract][Full Text] [Related]
12. Advances in Aerogels Formulations for Pulmonary Targeted Delivery of Therapeutic Agents: Safety, Efficacy and Regulatory Aspects. Verma S; Sharma PK; Malviya R; Das S Curr Pharm Biotechnol; 2024; 25(15):1939-1951. PubMed ID: 38251702 [TBL] [Abstract][Full Text] [Related]
13. Alginate-Based Aerogel Particles as Drug Delivery Systems: Investigation of the Supercritical Adsorption and In Vitro Evaluations. Lovskaya D; Menshutina N Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936834 [TBL] [Abstract][Full Text] [Related]
14. Photoluminescent Scaffolds Based on Natural and Synthetic Biodegradable Polymers for Bioimaging and Tissue Engineering. Trifanova EM; Babayeva G; Khvorostina MA; Atanova AV; Nikolaeva ME; Sochilina AV; Khaydukov EV; Popov VK Life (Basel); 2023 Mar; 13(4):. PubMed ID: 37109400 [TBL] [Abstract][Full Text] [Related]
15. Design of Aerogels, Cryogels and Xerogels of Alginate: Effect of Molecular Weight, Gelation Conditions and Drying Method on Particles' Micromeritics. Rodríguez-Dorado R; López-Iglesias C; García-González CA; Auriemma G; Aquino RP; Del Gaudio P Molecules; 2019 Mar; 24(6):. PubMed ID: 30884869 [TBL] [Abstract][Full Text] [Related]
16. 3D Printing of Antibacterial, Biocompatible, and Biomimetic Hybrid Aerogel-Based Scaffolds with Hierarchical Porosities via Integrating Antibacterial Peptide-Modified Silk Fibroin with Silica Nanostructure. Karamat-Ullah N; Demidov Y; Schramm M; Grumme D; Auer J; Bohr C; Brachvogel B; Maleki H ACS Biomater Sci Eng; 2021 Sep; 7(9):4545-4556. PubMed ID: 34415718 [TBL] [Abstract][Full Text] [Related]
17. Aerogel-Based Materials in Bone and Cartilage Tissue Engineering-A Review with Future Implications. Lázár I; Čelko L; Menelaou M Gels; 2023 Sep; 9(9):. PubMed ID: 37754427 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of Antibacterial, Osteo-Inductor 3D Printed Aerogel-Based Scaffolds by Incorporation of Drug Laden Hollow Mesoporous Silica Microparticles into the Self-Assembled Silk Fibroin Biopolymer. Ng P; Pinho AR; Gomes MC; Demidov Y; Krakor E; Grume D; Herb M; Lê K; Mano J; Mathur S; Maleki H Macromol Biosci; 2022 Apr; 22(4):e2100442. PubMed ID: 35029037 [TBL] [Abstract][Full Text] [Related]