These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 39221155)

  • 1. A phosphate glass reinforced composite acrylamide gradient scaffold for osteochondral interface regeneration.
    Younus ZM; Ahmed I; Roach P; Forsyth NR
    Biomater Biosyst; 2024 Sep; 15():100099. PubMed ID: 39221155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acrylamide-based hydrogels with distinct osteogenic and chondrogenic differentiation potential.
    Younus ZM; Roach P; Forsyth NR
    Prog Biomater; 2022 Sep; 11(3):297-309. PubMed ID: 35840792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplemented with bioactive glass 1393.
    Conoscenti G; Carfì Pavia F; Ongaro A; Brucato V; Goegele C; Schwarz S; Boccaccini AR; Stoelzel K; La Carrubba V; Schulze-Tanzil G
    Connect Tissue Res; 2019 Jul; 60(4):344-357. PubMed ID: 30348015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration.
    Lee YH; Wu HC; Yeh CW; Kuan CH; Liao HT; Hsu HC; Tsai JC; Sun JS; Wang TW
    Acta Biomater; 2017 Nov; 63():210-226. PubMed ID: 28899816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsphere-Based Hierarchically Juxtapositioned Biphasic Scaffolds Prepared from Poly(Lactic-co-Glycolic Acid) and Nanohydroxyapatite for Osteochondral Tissue Engineering.
    Shalumon KT; Sheu C; Fong YT; Liao HT; Chen JP
    Polymers (Basel); 2016 Dec; 8(12):. PubMed ID: 30974705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Honeycomb-like biomimetic scaffold by functionalized antibacterial hydrogel and biodegradable porous Mg alloy for osteochondral regeneration.
    Zhang Y; Dong Q; Zhao X; Sun Y; Lin X; Zhang X; Wang T; Yang T; Jiang X; Li J; Cao Z; Cai T; Liu W; Zhang H; Bai J; Yao Q
    Front Bioeng Biotechnol; 2024; 12():1417742. PubMed ID: 39070169
    [No Abstract]   [Full Text] [Related]  

  • 7. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatically Cross-Linked Silk Fibroin-Based Hierarchical Scaffolds for Osteochondral Regeneration.
    Ribeiro VP; Pina S; Costa JB; Cengiz IF; García-Fernández L; Fernández-Gutiérrez MDM; Paiva OC; Oliveira AL; San-Román J; Oliveira JM; Reis RL
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):3781-3799. PubMed ID: 30609898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic gradient scaffold of collagen-hydroxyapatite for osteochondral regeneration.
    Parisi C; Salvatore L; Veschini L; Serra MP; Hobbs C; Madaghiele M; Sannino A; Di Silvio L
    J Tissue Eng; 2020; 11():2041731419896068. PubMed ID: 35003613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilayered extracellular matrix derived scaffolds with anisotropic pore architecture guide tissue organization during osteochondral defect repair.
    Browe DC; Díaz-Payno PJ; Freeman FE; Schipani R; Burdis R; Ahern DP; Nulty JM; Guler S; Randall LD; Buckley CT; Brama PAJ; Kelly DJ
    Acta Biomater; 2022 Apr; 143():266-281. PubMed ID: 35278686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro Chondrocyte Responses in Mg-doped Wollastonite/Hydrogel Composite Scaffolds for Osteochondral Interface Regeneration.
    Yu X; Zhao T; Qi Y; Luo J; Fang J; Yang X; Liu X; Xu T; Yang Q; Gou Z; Dai X
    Sci Rep; 2018 Dec; 8(1):17911. PubMed ID: 30559344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A composite bilayer scaffold functionalized for osteochondral tissue regeneration in rat animal model.
    Abedin Dargoush S; Hanaee-Ahvaz H; Irani S; Soleimani M; Khatami SM; Sohi AN
    J Tissue Eng Regen Med; 2022 Jun; 16(6):559-574. PubMed ID: 35319813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological Response of Osteoblastic and Chondrogenic Cells to Graphene-Containing PCL/Bioactive Glass Bilayered Scaffolds for Osteochondral Tissue Engineering Applications.
    Deliormanlı AM; Atmaca H
    Appl Biochem Biotechnol; 2018 Dec; 186(4):972-989. PubMed ID: 29797300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Preparation and
    Li J; Zhang X; Guo Q; Zhang J; Cao Y; Zhang X; Huang J; Wang Q; Liu X; Hao C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):434-440. PubMed ID: 29806301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration.
    Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M
    Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of
    Tamburaci S; Perpelek M; Aydemir S; Baykara B; Havitcioglu H; Tihminlioglu F
    ACS Appl Bio Mater; 2023 Apr; 6(4):1504-1514. PubMed ID: 37009717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionally graded multilayer scaffolds for in vivo osteochondral tissue engineering.
    Kang H; Zeng Y; Varghese S
    Acta Biomater; 2018 Sep; 78():365-377. PubMed ID: 30031911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and Regeneration of Osteochondral Cells in Bioactive Niche: A Promising Approach for Osteochondral Tissue Repair.
    Mukundan LM; Nirmal RS; Nair PD
    ACS Appl Bio Mater; 2022 Jun; 5(6):2676-2688. PubMed ID: 35658402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An oriented-collagen scaffold including Wnt5a promotes osteochondral regeneration and cartilage interface integration in a rabbit model.
    Qi Y; Zhang W; Li G; Niu L; Zhang Y; Tang R; Feng G
    FASEB J; 2020 Aug; 34(8):11115-11132. PubMed ID: 32627881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.