These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 39221155)
21. Gradient scaffold with spatial growth factor profile for osteochondral interface engineering. Dorcemus DL; Kim HS; Nukavarapu SP Biomed Mater; 2021 Mar; 16(3):. PubMed ID: 33291092 [TBL] [Abstract][Full Text] [Related]
22. Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Abbasi N; Ivanovski S; Gulati K; Love RM; Hamlet S Biomater Res; 2020; 24():2. PubMed ID: 31911842 [TBL] [Abstract][Full Text] [Related]
24. Biphasic Scaffolds from Marine Collagens for Regeneration of Osteochondral Defects. Bernhardt A; Paul B; Gelinsky M Mar Drugs; 2018 Mar; 16(3):. PubMed ID: 29534027 [TBL] [Abstract][Full Text] [Related]
25. Controlled domain gels with a biomimetic gradient environment for osteochondral tissue regeneration. Zhang N; Wang Y; Zhang J; Guo J; He J Acta Biomater; 2021 Nov; 135():304-317. PubMed ID: 34454084 [TBL] [Abstract][Full Text] [Related]
26. Installation of click-type functional groups enable the creation of an additive manufactured construct for the osteochondral interface. Beeren IAO; Dijkstra PJ; Lourenço AFH; Sinha R; Gomes DB; Liu H; Bouvy N; Baker MB; Camarero-Espinosa S; Moroni L Biofabrication; 2022 Dec; 15(1):. PubMed ID: 36395500 [TBL] [Abstract][Full Text] [Related]
27. [Preparation and Lan Y; Zhang J; Ran Y; Li B; Cai X; Jiang T; Xue D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2024 Jun; 38(6):755-762. PubMed ID: 38918199 [TBL] [Abstract][Full Text] [Related]
28. Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering. Cao Y; Yang S; Zhao D; Li Y; Cheong SS; Han D; Li Q J Orthop Translat; 2020 Jul; 23():89-100. PubMed ID: 32514393 [TBL] [Abstract][Full Text] [Related]
29. Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Cao T; Ho KH; Teoh SH Tissue Eng; 2003; 9 Suppl 1():S103-12. PubMed ID: 14511474 [TBL] [Abstract][Full Text] [Related]
30. Osteochondral interface generation by rabbit bone marrow stromal cells and osteoblasts coculture. Chen K; Teh TK; Ravi S; Toh SL; Goh JC Tissue Eng Part A; 2012 Sep; 18(17-18):1902-11. PubMed ID: 22721548 [TBL] [Abstract][Full Text] [Related]
31. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications. Mellor LF; Nordberg RC; Huebner P; Mohiti-Asli M; Taylor MA; Efird W; Oxford JT; Spang JT; Shirwaiker RA; Loboa EG J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2017-2030. PubMed ID: 31880408 [TBL] [Abstract][Full Text] [Related]
32. A Cellularized Biphasic Implant Based on a Bioactive Silk Fibroin Promotes Integration and Tissue Organization during Osteochondral Defect Repair in a Porcine Model. Pérez-Silos V; Moncada-Saucedo NK; Peña-Martínez V; Lara-Arias J; Marino-Martínez IA; Camacho A; Romero-Díaz VJ; Lara Banda M; García-Ruiz A; Soto-Dominguez A; Rodriguez-Rocha H; López-Serna N; Tuan RS; Lin H; Fuentes-Mera L Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627374 [TBL] [Abstract][Full Text] [Related]
33. Regeneration of hyaline-like cartilage and subchondral bone simultaneously by poly(l-glutamic acid) based osteochondral scaffolds with induced autologous adipose derived stem cells. Zhang K; He S; Yan S; Li G; Zhang D; Cui L; Yin J J Mater Chem B; 2016 Apr; 4(15):2628-2645. PubMed ID: 32263287 [TBL] [Abstract][Full Text] [Related]
34. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Zhou J; Xu C; Wu G; Cao X; Zhang L; Zhai Z; Zheng Z; Chen X; Wang Y Acta Biomater; 2011 Nov; 7(11):3999-4006. PubMed ID: 21757035 [TBL] [Abstract][Full Text] [Related]
35. Platelet-Derived Growth Factor-Functionalized Scaffolds for the Recruitment of Synovial Mesenchymal Stem Cells for Osteochondral Repair. Luo Y; Cao X; Chen J; Gu J; Yu H; Sun J; Zou J Stem Cells Int; 2022; 2022():2190447. PubMed ID: 35126525 [TBL] [Abstract][Full Text] [Related]
36. Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering. Wang L; Zhao L; Detamore MS J Tissue Eng Regen Med; 2011 Oct; 5(9):712-21. PubMed ID: 21953869 [TBL] [Abstract][Full Text] [Related]
37. In vitro generation of a multilayered osteochondral construct with an osteochondral interface using rabbit bone marrow stromal cells and a silk peptide-based scaffold. Chen K; Shi P; Teh TK; Toh SL; Goh JCh J Tissue Eng Regen Med; 2016 Apr; 10(4):284-93. PubMed ID: 23413023 [TBL] [Abstract][Full Text] [Related]
38. Sheep condyle model evaluation of bone marrow cell concentrate combined with a scaffold for repair of large osteochondral defects. Tamaddon M; Blunn G; Xu W; Alemán Domínguez ME; Monzón M; Donaldson J; Skinner J; Arnett TR; Wang L; Liu C Bone Joint Res; 2021 Oct; 10(10):677-689. PubMed ID: 34665001 [TBL] [Abstract][Full Text] [Related]
39. Gradient scaffolds for osteochondral tissue engineering and regeneration. Zhang B; Huang J; Narayan RJ J Mater Chem B; 2020 Sep; 8(36):8149-8170. PubMed ID: 32776030 [TBL] [Abstract][Full Text] [Related]
40. A viscoelastic PEGylated poly(glycerol sebacate)-based bilayer scaffold for cartilage regeneration in full-thickness osteochondral defect. Lin D; Cai B; Wang L; Cai L; Wang Z; Xie J; Lv QX; Yuan Y; Liu C; Shen SG Biomaterials; 2020 Sep; 253():120095. PubMed ID: 32445809 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]