These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 39221256)

  • 1. TCR-H: explainable machine learning prediction of T-cell receptor epitope binding on unseen datasets.
    T RR; Demerdash ONA; Smith JC
    Front Immunol; 2024; 15():1426173. PubMed ID: 39221256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting TCR sequences for unseen antigen epitopes using structural and sequence features.
    Ji H; Wang XX; Zhang Q; Zhang C; Zhang HM
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38711371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current challenges for unseen-epitope TCR interaction prediction and a new perspective derived from image classification.
    Moris P; De Pauw J; Postovskaya A; Gielis S; De Neuter N; Bittremieux W; Ogunjimi B; Laukens K; Meysman P
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33346826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On TCR binding predictors failing to generalize to unseen peptides.
    Grazioli F; Mösch A; Machart P; Li K; Alqassem I; O'Donnell TJ; Min MR
    Front Immunol; 2022; 13():1014256. PubMed ID: 36341448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TULIP: A transformer-based unsupervised language model for interacting peptides and T cell receptors that generalizes to unseen epitopes.
    Meynard-Piganeau B; Feinauer C; Weigt M; Walczak AM; Mora T
    Proc Natl Acad Sci U S A; 2024 Jun; 121(24):e2316401121. PubMed ID: 38838016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATM-TCR: TCR-Epitope Binding Affinity Prediction Using a Multi-Head Self-Attention Model.
    Cai M; Bang S; Zhang P; Lee H
    Front Immunol; 2022; 13():893247. PubMed ID: 35874725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BERTrand-peptide:TCR binding prediction using Bidirectional Encoder Representations from Transformers augmented with random TCR pairing.
    Myronov A; Mazzocco G; Król P; Plewczynski D
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37535685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TSpred: a robust prediction framework for TCR-epitope interactions using paired chain TCR sequence data.
    Kim HY; Kim S; Park WY; Kim D
    Bioinformatics; 2024 Aug; 40(8):. PubMed ID: 39052940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GTE: a graph learning framework for prediction of T-cell receptors and epitopes binding specificity.
    Jiang F; Guo Y; Ma H; Na S; Zhong W; Han Y; Wang T; Huang J
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 39007599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting T cell receptor functionality against mutant epitopes.
    Drost F; Dorigatti E; Straub A; Hilgendorf P; Wagner KI; Heyer K; López Montes M; Bischl B; Busch DH; Schober K; Schubert B
    Cell Genom; 2024 Sep; 4(9):100634. PubMed ID: 39151427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting TCR-Epitope Binding Specificity Using Deep Metric Learning and Multimodal Learning.
    Luu AM; Leistico JR; Miller T; Kim S; Song JS
    Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33920780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TITAN: T-cell receptor specificity prediction with bimodal attention networks.
    Weber A; Born J; Rodriguez Martínez M
    Bioinformatics; 2021 Jul; 37(Suppl_1):i237-i244. PubMed ID: 34252922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Prediction of the Landscape of T Cell Epitope Immunogenicity in Sequence Space.
    Ogishi M; Yotsuyanagi H
    Front Immunol; 2019; 10():827. PubMed ID: 31057550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Epitope-Specific T Cells in T-Cell Receptor Repertoires.
    Gielis S; Moris P; Bittremieux W; De Neuter N; Ogunjimi B; Laukens K; Meysman P
    Methods Mol Biol; 2020; 2120():183-195. PubMed ID: 32124320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Specific TCR-Peptide Binding From Large Dictionaries of TCR-Peptide Pairs.
    Springer I; Besser H; Tickotsky-Moskovitz N; Dvorkin S; Louzoun Y
    Front Immunol; 2020; 11():1803. PubMed ID: 32983088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting CD4 T-cell epitopes based on antigen cleavage, MHCII presentation, and TCR recognition.
    Schneidman-Duhovny D; Khuri N; Dong GQ; Winter MB; Shifrut E; Friedman N; Craik CS; Pratt KP; Paz P; Aswad F; Sali A
    PLoS One; 2018; 13(11):e0206654. PubMed ID: 30399156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural-based machine learning method to classify binding affinities between TCR and peptide-MHC complexes.
    Dhusia K; Su Z; Wu Y
    Mol Immunol; 2021 Nov; 139():76-86. PubMed ID: 34455212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TPBTE: A model based on convolutional Transformer for predicting the binding of TCR to epitope.
    Wu J; Qi M; Zhang F; Zheng Y
    Mol Immunol; 2023 May; 157():30-41. PubMed ID: 36966551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EPIC-TRACE: predicting TCR binding to unseen epitopes using attention and contextualized embeddings.
    Korpela D; Jokinen E; Dumitrescu A; Huuhtanen J; Mustjoki S; Lähdesmäki H
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TEPCAM: Prediction of T-cell receptor-epitope binding specificity via interpretable deep learning.
    Chen J; Zhao B; Lin S; Sun H; Mao X; Wang M; Chu Y; Hong L; Wei DQ; Li M; Xiong Y
    Protein Sci; 2024 Jan; 33(1):e4841. PubMed ID: 37983648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.