These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 3922147)
1. Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Syldatk C; Lang S; Matulovic U; Wagner F Z Naturforsch C Biosci; 1985; 40(1-2):61-7. PubMed ID: 3922147 [TBL] [Abstract][Full Text] [Related]
2. Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Syldatk C; Lang S; Wagner F; Wray V; Witte L Z Naturforsch C Biosci; 1985; 40(1-2):51-60. PubMed ID: 3993180 [TBL] [Abstract][Full Text] [Related]
3. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Zhang Y; Miller RM Appl Environ Microbiol; 1992 Oct; 58(10):3276-82. PubMed ID: 1444363 [TBL] [Abstract][Full Text] [Related]
4. High-Yield Di-Rhamnolipid Production by Li Z; Zhang Y; Lin J; Wang W; Li S Molecules; 2019 Apr; 24(7):. PubMed ID: 30979013 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Hori K; Marsudi S; Unno H Biotechnol Bioeng; 2002 Jun; 78(6):699-707. PubMed ID: 11992535 [TBL] [Abstract][Full Text] [Related]
6. Surface-active properties of rhamnolipids from Pseudomonas aeruginosa GS3. Patel RM; Desai AJ J Basic Microbiol; 1997; 37(4):281-6. PubMed ID: 9323868 [TBL] [Abstract][Full Text] [Related]
7. Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Gunther NW; Nuñez A; Fett W; Solaiman DK Appl Environ Microbiol; 2005 May; 71(5):2288-93. PubMed ID: 15870313 [TBL] [Abstract][Full Text] [Related]
8. Rhamnose lipids--biosynthesis, microbial production and application potential. Lang S; Wullbrandt D Appl Microbiol Biotechnol; 1999 Jan; 51(1):22-32. PubMed ID: 10077819 [TBL] [Abstract][Full Text] [Related]
9. Designer rhamnolipids by reduction of congener diversity: production and characterization. Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456 [TBL] [Abstract][Full Text] [Related]
10. Characterization of rhamnolipid production by Burkholderia glumae. Costa SG; Déziel E; Lépine F Lett Appl Microbiol; 2011 Dec; 53(6):620-7. PubMed ID: 21933203 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the structural composition and surface properties of rhamnolipid mixtures produced by Pseudomonas aeruginosa UFPEDA 614 in different cultivation periods. de Santana-Filho AP; Camilios-Neto D; de Souza LM; Sassaki GL; Mitchell DA; Krieger N Appl Biochem Biotechnol; 2015 Jan; 175(2):988-95. PubMed ID: 25351631 [TBL] [Abstract][Full Text] [Related]
12. The effect of carbon, nitrogen and iron ions on mono-rhamnolipid production and rhamnolipid synthesis gene expression by Pseudomonas aeruginosa ATCC 15442. Shatila F; Diallo MM; Şahar U; Ozdemir G; Yalçın HT Arch Microbiol; 2020 Aug; 202(6):1407-1417. PubMed ID: 32173773 [TBL] [Abstract][Full Text] [Related]
13. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. Koch AK; Käppeli O; Fiechter A; Reiser J J Bacteriol; 1991 Jul; 173(13):4212-9. PubMed ID: 1648079 [TBL] [Abstract][Full Text] [Related]
14. Anaerobic biosynthesis of rhamnolipids by Pseudomonas aeruginosa: performance, mechanism and its application potential for enhanced oil recovery. Zhao F; Wang Q; Zhang Y; Lei L Microb Cell Fact; 2021 May; 20(1):103. PubMed ID: 34016105 [TBL] [Abstract][Full Text] [Related]
15. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant. Priji P; Sajith S; Unni KN; Anderson RC; Benjamin S J Basic Microbiol; 2017 Jan; 57(1):21-33. PubMed ID: 27400277 [TBL] [Abstract][Full Text] [Related]
16. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications. Zhao F; Zhou J; Han S; Ma F; Zhang Y; Zhang J World J Microbiol Biotechnol; 2016 Apr; 32(4):54. PubMed ID: 26925616 [TBL] [Abstract][Full Text] [Related]
17. Pseudosolubilized n-alkanes analysis and optimization of biosurfactants production by Pseudomonas sp. DG17. Hua F; Wang HQ; Zhao YC; Yang Y Environ Sci Pollut Res Int; 2015 May; 22(9):6660-9. PubMed ID: 25414034 [TBL] [Abstract][Full Text] [Related]
18. Demonstration of bioprocess factors optimization for enhanced mono-rhamnolipid production by a marine Pseudomonas guguanensis. C RK; R LS; D A; V S; Vasudevan V; Krishnan MEG Int J Biol Macromol; 2018 Mar; 108():531-540. PubMed ID: 29208557 [TBL] [Abstract][Full Text] [Related]
19. Rhamnolipids--next generation surfactants? Müller MM; Kügler JH; Henkel M; Gerlitzki M; Hörmann B; Pöhnlein M; Syldatk C; Hausmann R J Biotechnol; 2012 Dec; 162(4):366-80. PubMed ID: 22728388 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a New Rhamnolipid Biosurfactant Complex from Shreve GS; Makula R Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31861084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]