These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 3922147)
21. Evaluation of different carbon and nitrogen sources in production of rhamnolipids by a strain of Pseudomonas aeruginosa. Santos AS; Sampaio AP; Vasquez GS; Santa Anna LM; Pereira N; Freire DM Appl Biochem Biotechnol; 2002; 98-100():1025-35. PubMed ID: 12018227 [TBL] [Abstract][Full Text] [Related]
22. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440. Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509 [TBL] [Abstract][Full Text] [Related]
23. Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Hošková M; Schreiberová O; Ježdík R; Chudoba J; Masák J; Sigler K; Rezanka T Bioresour Technol; 2013 Feb; 130():510-6. PubMed ID: 23313768 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R. Kumar CG; Mamidyala SK; Sujitha P; Muluka H; Akkenapally S Biotechnol Prog; 2012; 28(6):1507-16. PubMed ID: 22961871 [TBL] [Abstract][Full Text] [Related]
25. Maximize rhamnolipid production with low foaming and high yield. Sodagari M; Invally K; Ju LK Enzyme Microb Technol; 2018 Mar; 110():79-86. PubMed ID: 29310859 [TBL] [Abstract][Full Text] [Related]
26. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Zhao F; Shi R; Ma F; Han S; Zhang Y Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151 [TBL] [Abstract][Full Text] [Related]
27. Utilization of Crude Glycerol as a Substrate for the Production of Rhamnolipid by Pseudomonas aeruginosa. Eraqi WA; Yassin AS; Ali AE; Amin MA Biotechnol Res Int; 2016; 2016():3464509. PubMed ID: 26942014 [TBL] [Abstract][Full Text] [Related]
28. Glycerol or crude glycerol as substrates make Pseudomonas aeruginosa achieve anaerobic production of rhamnolipids. Zhao F; Wu Y; Wang Q; Zheng M; Cui Q Microb Cell Fact; 2021 Sep; 20(1):185. PubMed ID: 34556134 [TBL] [Abstract][Full Text] [Related]
29. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10. Christova N; Tuleva B; Cohenb R; Ivanova G; Stoevd G; Stoilova-Disheva M; Stoineva I Z Naturforsch C J Biosci; 2011; 66(7-8):394-402. PubMed ID: 21950164 [TBL] [Abstract][Full Text] [Related]
30. Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Chayabutra C; Wu J; Ju LK Biotechnol Bioeng; 2001 Jan; 72(1):25-33. PubMed ID: 11084590 [TBL] [Abstract][Full Text] [Related]
31. Rhamnolipid biosurfactants: production and their potential in environmental biotechnology. Pornsunthorntawee O; Wongpanit P; Rujiravanit R Adv Exp Med Biol; 2010; 672():211-21. PubMed ID: 20545285 [TBL] [Abstract][Full Text] [Related]
32. Structure elucidation and proposed de novo synthesis of an unusual mono-rhamnolipid by Pseudomonas guguanensis from Chennai Port area. Ramya Devi KC; Sundaram RL; Vajiravelu S; Vasudevan V; Mary Elizabeth GK Sci Rep; 2019 Apr; 9(1):5992. PubMed ID: 30979908 [TBL] [Abstract][Full Text] [Related]
33. Production and Characterization of Rhamnolipids Produced by Maťátková O; Michailidu J; Ježdík R; Jarošová Kolouchová I; Řezanka T; Jirků V; Masák J Microorganisms; 2022 Jun; 10(7):. PubMed ID: 35888990 [TBL] [Abstract][Full Text] [Related]
34. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Wittgens A; Kovacic F; Müller MM; Gerlitzki M; Santiago-Schübel B; Hofmann D; Tiso T; Blank LM; Henkel M; Hausmann R; Syldatk C; Wilhelm S; Rosenau F Appl Microbiol Biotechnol; 2017 Apr; 101(7):2865-2878. PubMed ID: 27988798 [TBL] [Abstract][Full Text] [Related]
35. Sodium chloride effect on the aggregation behaviour of rhamnolipids and their antifungal activity. Rodrigues AI; Gudiña EJ; Teixeira JA; Rodrigues LR Sci Rep; 2017 Oct; 7(1):12907. PubMed ID: 29018256 [TBL] [Abstract][Full Text] [Related]
36. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Amani H; Müller MM; Syldatk C; Hausmann R Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261 [TBL] [Abstract][Full Text] [Related]
37. Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Marsudi S; Unno H; Hori K Appl Microbiol Biotechnol; 2008 Apr; 78(6):955-61. PubMed ID: 18299827 [TBL] [Abstract][Full Text] [Related]
38. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. Haba E; Espuny MJ; Busquets M; Manresa A J Appl Microbiol; 2000 Mar; 88(3):379-87. PubMed ID: 10747218 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874. Müller MM; Hörmann B; Kugel M; Syldatk C; Hausmann R Appl Microbiol Biotechnol; 2011 Feb; 89(3):585-92. PubMed ID: 20890599 [TBL] [Abstract][Full Text] [Related]
40. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Silva SN; Farias CB; Rufino RD; Luna JM; Sarubbo LA Colloids Surf B Biointerfaces; 2010 Aug; 79(1):174-83. PubMed ID: 20417068 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]