These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 39221509)
1. Development of a Facile and Green Synthesis Strategy for Brightly Fluorescent Carbon Dots from Various Waste Materials. Fernandes S; Algarra M; Gil A; Esteves da Silva J; Pinto da Silva L ChemSusChem; 2024 Sep; ():e202401702. PubMed ID: 39221509 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the role of pH and the stoichiometry of the N-dopant in the luminescence, composition and synthesis yield of carbon dots. Crista D; Algarra M; Martínez de Yuso MV; Esteves da Silva JCG; Pinto da Silva L J Mater Chem B; 2023 Feb; 11(5):1131-1143. PubMed ID: 36637160 [TBL] [Abstract][Full Text] [Related]
3. Turning Spent Coffee Grounds into Sustainable Precursors for the Fabrication of Carbon Dots. Crista DMA; El Mragui A; Algarra M; Esteves da Silva JCG; Luque R; Pinto da Silva L Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32575837 [TBL] [Abstract][Full Text] [Related]
4. Recent advances in waste-derived carbon dots and their nanocomposites for environmental remediation and biological applications. Soni H; Bhattu M; Sd P; Kaur M; Verma M; Singh J Environ Res; 2024 Jun; 251(Pt 1):118560. PubMed ID: 38447603 [TBL] [Abstract][Full Text] [Related]
5. Comparative life cycle assessment of high-yield synthesis routes for carbon dots. Fernandes S; Esteves da Silva JCG; Pinto da Silva L NanoImpact; 2021 Jul; 23():100332. PubMed ID: 35559833 [TBL] [Abstract][Full Text] [Related]
6. Synthesis Processes, Photoluminescence Mechanism, and the Toxicity of Amorphous or Polymeric Carbon Dots. Yao X; Lewis RE; Haynes CL Acc Chem Res; 2022 Dec; 55(23):3312-3321. PubMed ID: 36417545 [TBL] [Abstract][Full Text] [Related]
7. Upcycling of plastic waste into fluorescent carbon dots: An environmentally viable transformation to biocompatible C-dots with potential prospective in analytical applications. Chaudhary S; Kumari M; Chauhan P; Ram Chaudhary G Waste Manag; 2021 Feb; 120():675-686. PubMed ID: 33223249 [TBL] [Abstract][Full Text] [Related]
8. Facile and eco-friendly synthesis of green fluorescent carbon nanodots for applications in bioimaging, patterning and staining. Shi L; Li Y; Li X; Wen X; Zhang G; Yang J; Dong C; Shuang S Nanoscale; 2015 Apr; 7(16):7394-401. PubMed ID: 25826612 [TBL] [Abstract][Full Text] [Related]
9. Green Carbon Dots: Synthesis, Characterization, Properties and Biomedical Applications. Jing HH; Bardakci F; Akgöl S; Kusat K; Adnan M; Alam MJ; Gupta R; Sahreen S; Chen Y; Gopinath SCB; Sasidharan S J Funct Biomater; 2023 Jan; 14(1):. PubMed ID: 36662074 [TBL] [Abstract][Full Text] [Related]
10. Green Synthesis of Phosphorescent Carbon Dots for Anticounterfeiting and Information Encryption. Cheng M; Cao L; Guo H; Dong W; Li L Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458926 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Different Bottom-up Routes for the Fabrication of Carbon Dots. Crista DMA; Esteves da Silva JCG; Pinto da Silva L Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32635483 [TBL] [Abstract][Full Text] [Related]
12. Carbon Dots: From Synthesis to Unraveling the Fluorescence Mechanism. Alafeef M; Srivastava I; Aditya T; Pan D Small; 2024 Jan; 20(4):e2303937. PubMed ID: 37715112 [TBL] [Abstract][Full Text] [Related]
13. Facile Synthesis of N, S-Doped Carbon Quantum Dots from Food Waste as Fluorescent Probe for Sensitive Detection of Thiamphenicol and Its Analogues in Real Food Samples along with an Application in Bioimaging. Chen S; Ouyang W; Zhu Y; He L; Zou L; Ao X; Liu S; Yang Y; Li J Foods; 2022 Aug; 11(16):. PubMed ID: 36010413 [TBL] [Abstract][Full Text] [Related]
14. Facile and green synthesis of fluorescent carbon dots with tunable emission for sensors and cells imaging. Diao H; Li T; Zhang R; Kang Y; Liu W; Cui Y; Wei S; Wang N; Li L; Wang H; Niu W; Sun T Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jul; 200():226-234. PubMed ID: 29689513 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of fluorescent hybrid nanomaterials based on carbon dots and its applications for improving the selective detection of Fe (III) in different matrices and cellular imaging. Cai H; Zhu Y; Xu H; Chu H; Zhang D; Li J Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():119033. PubMed ID: 33045482 [TBL] [Abstract][Full Text] [Related]
16. Chitosan-Based Carbon Dots with Applied Aspects: New Frontiers of International Interest in a Material of Marine Origin. Villalba-Rodríguez AM; González-González RB; Martínez-Ruiz M; Flores-Contreras EA; Cárdenas-Alcaide MF; Iqbal HMN; Parra-Saldívar R Mar Drugs; 2022 Dec; 20(12):. PubMed ID: 36547929 [TBL] [Abstract][Full Text] [Related]
17. Facile and Green Synthesis of Carbon Dots from Melia Azedarach Leaves for pH Sensing and Cell Imaging. Zhang Y; Cai L; Fu Z; Cui F J Fluoresc; 2023 Sep; 33(5):1841-1851. PubMed ID: 36853552 [TBL] [Abstract][Full Text] [Related]
18. Understanding the aggregation of excitation wavelength independent emission of amphiphilic carbon dots for bioimaging and organic acid sensing. Prakash S; Sahu S; Patra B; Mishra AK Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122257. PubMed ID: 36565504 [TBL] [Abstract][Full Text] [Related]
19. Life Cycle Assessment-Based Comparative Study between High-Yield and "Standard" Bottom-Up Procedures for the Fabrication of Carbon Dots. Fernandes S; Esteves da Silva JCG; Pinto da Silva L Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629474 [TBL] [Abstract][Full Text] [Related]
20. Bottom-up preparation of nitrogen doped carbon quantum dots with green emission under microwave-assisted hydrothermal treatment and their biological imaging. Guo L; Li L; Liu M; Wan Q; Tian J; Huang Q; Wen Y; Liang S; Zhang X; Wei Y Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():60-66. PubMed ID: 29519444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]