These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 39221868)

  • 1. Electrochemical Relithiation in Spent LiFePO
    Chen S; Zhang B; Yang L; Hu X; Hong N; Wang H; Huang J; Deng W; Zou G; Hou H; Ji X
    Inorg Chem; 2024 Sep; 63(37):17166-17175. PubMed ID: 39221868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Regeneration of Degraded LiFePO
    Li C; Gong R; Zhang Y; Meng Q; Dong P
    Molecules; 2024 Jul; 29(14):. PubMed ID: 39064918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Room-Temperature Lithium-Restocking Strategy for the Direct Reuse of Degraded LiFePO
    Yang D; Fang Z; Ji Y; Yang Y; Hou J; Zhang Z; Du W; Qi X; Zhu Z; Zhang R; Hu P; Qie L; Huang Y
    Angew Chem Int Ed Engl; 2024 Dec; 63(49):e202409929. PubMed ID: 39356117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile separation and regeneration of LiFePO
    Zhong X; Mao X; Qin W; Zeng H; Zhao G; Han J
    Waste Manag; 2023 Feb; 156():236-246. PubMed ID: 36495701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y
    Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct regeneration of spent LiFePO
    Yang J; Zhou K; Gong R; Meng Q; Zhang Y; Dong P
    J Environ Manage; 2023 Dec; 348():119384. PubMed ID: 37925982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a Preoxidation and Cation Doping Regeneration Strategy to Improve Rate Performance Recycling Spent LiFePO
    Li X; Ge M; Zhou Q; Gao Z; Cui Y; Zhang M; Tang X; Zhang H; Shi Z; Yin Y; Yang S
    Langmuir; 2023 Sep; 39(37):13132-13139. PubMed ID: 37656965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life Cycle of LiFePO
    Rostami H; Valio J; Tynjälä P; Lassi U; Suominen P
    Chemphyschem; 2024 Dec; 25(24):e202400459. PubMed ID: 39264359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid-free mechanochemical process to enhance the selective recycling of spent LiFePO
    Zhang Q; Fan E; Lin J; Sun S; Zhang X; Chen R; Wu F; Li L
    J Hazard Mater; 2023 Feb; 443(Pt A):130160. PubMed ID: 36283216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multifunctional Amino Acid Enables Direct Recycling of Spent LiFePO
    Tang D; Ji G; Wang J; Liang Z; Chen W; Ji H; Ma J; Liu S; Zhuang Z; Zhou G
    Adv Mater; 2024 Feb; 36(5):e2309722. PubMed ID: 38010273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proof-of-Concept study of ion-exchange method for the recycling of LiFePO
    Zhang X; Liu Z; Qu D
    Waste Manag; 2023 Feb; 157():1-7. PubMed ID: 36512923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct regeneration of LiFePO
    Huang M; Wang Z; Yang H; Yang L; Chen K; Yu H; Xu C; Guo Y; Shao P; Chen L; Luo X
    J Colloid Interface Sci; 2025 Feb; 679(Pt A):586-597. PubMed ID: 39388945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z
    Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Heteroatom Doping on Electrochemical Properties of Olivine LiFePO
    Jiang X; Xin Y; He B; Zhang F; Tian H
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential-Regulated Design for Direct Recycling of Degraded LiFePO
    Qiu X; Wang C; Chen Y; Du Z; Xie L; Han Q; Zhu L; Cao X; Ji X
    Small; 2024 Oct; 20(40):e2402278. PubMed ID: 38822712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of a carbon supported lithium iron phosphate nanocomposite cathode material from metal-organic framework for lithium-ion batteries.
    Yu L; Zeng H; Jia R; Zhang R; Xu B
    J Colloid Interface Sci; 2024 Oct; 672():564-573. PubMed ID: 38852357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling of LiFePO
    Chen X; Li S; Wang Y; Jiang Y; Tan X; Han W; Wang S
    Waste Manag; 2021 Dec; 136():67-75. PubMed ID: 34637980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling of Spent Lithium Iron Phosphate Cathodes: Challenges and Progress.
    Yao H; Zhang Y; Yang G; Fu L; Li Y; Zhou L; Geng S; Xiang Y; Seh ZW
    ACS Appl Mater Interfaces; 2024 Dec; 16(49):67087-67105. PubMed ID: 39282747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topotactic Transformation of Surface Structure Enabling Direct Regeneration of Spent Lithium-Ion Battery Cathodes.
    Jia K; Wang J; Zhuang Z; Piao Z; Zhang M; Liang Z; Ji G; Ma J; Ji H; Yao W; Zhou G; Cheng HM
    J Am Chem Soc; 2023 Apr; 145(13):7288-7300. PubMed ID: 36876987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Closed-loop recycling of spent lithium-ion batteries based on selective sulfidation: An unconventional approach.
    Gu K; Gao X; Chen Y; Qin W; Han J
    Waste Manag; 2023 Sep; 169():32-42. PubMed ID: 37393754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.