These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 39222704)
21. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. Xia S; Song S; Jia F; Gao G J Mater Chem B; 2019 Jul; 7(30):4638-4648. PubMed ID: 31364689 [TBL] [Abstract][Full Text] [Related]
22. Effects of printing-induced interfaces on localized strain within 3D printed hydrogel structures. Christensen K; Davis B; Jin Y; Huang Y Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():65-74. PubMed ID: 29752120 [TBL] [Abstract][Full Text] [Related]
23. Flexible Conformally Bioadhesive MXene Hydrogel Electronics for Machine Learning-Facilitated Human-Interactive Sensing. Wang W; Zhou H; Xu Z; Li Z; Zhang L; Wan P Adv Mater; 2024 Aug; 36(31):e2401035. PubMed ID: 38552161 [TBL] [Abstract][Full Text] [Related]
24. From lab to wearables: Innovations in multifunctional hydrogel chemistry for next-generation bioelectronic devices. Lee HK; Yang YJ; Koirala GR; Oh S; Kim TI Biomaterials; 2024 Oct; 310():122632. PubMed ID: 38824848 [TBL] [Abstract][Full Text] [Related]
25. Development of a Tough, Self-Healing Polyampholyte Terpolymer Hydrogel Patch with Enhanced Skin Adhesion via Tuning the Density and Strength of Ion-Pair Associations. Lee JH; Lee DS; Jung YC; Oh JW; Na YH ACS Appl Mater Interfaces; 2021 Feb; 13(7):8889-8900. PubMed ID: 33587615 [TBL] [Abstract][Full Text] [Related]
26. Chitosan-driven skin-attachable hydrogel sensors toward human motion and physiological signal monitoring. Jin R; Xu J; Duan L; Gao G Carbohydr Polym; 2021 Sep; 268():118240. PubMed ID: 34127222 [TBL] [Abstract][Full Text] [Related]
27. Low-cost sensor-integrated 3D-printed personalized prosthetic hands for children with amniotic band syndrome: A case study in sensing pressure distribution on an anatomical human-machine interface (AHMI) using 3D-printed conformal electrode arrays. Tong Y; Kucukdeger E; Halper J; Cesewski E; Karakozoff E; Haring AP; McIlvain D; Singh M; Khandelwal N; Meholic A; Laheri S; Sharma A; Johnson BN PLoS One; 2019; 14(3):e0214120. PubMed ID: 30921360 [TBL] [Abstract][Full Text] [Related]
28. Plant-inspired conductive adhesive organohydrogel with extreme environmental tolerance as a wearable dressing for multifunctional sensors. Tang Z; Bian S; Wei J; Xiao H; Zhang M; Liu K; Huang L; Chen L; Ni Y; Wu H Colloids Surf B Biointerfaces; 2022 Jul; 215():112509. PubMed ID: 35472651 [TBL] [Abstract][Full Text] [Related]
29. Multi-crosslinked hydrogels with strong wet adhesion, self-healing, antibacterial property, reactive oxygen species scavenging activity, and on-demand removability for seawater-immersed wound healing. Lv Y; Cai F; He Y; Li L; Huang Y; Yang J; Zheng Y; Shi X Acta Biomater; 2023 Mar; 159():95-110. PubMed ID: 36736644 [TBL] [Abstract][Full Text] [Related]
30. Tough, self-healing, adhesive double network conductive hydrogel based on gelatin-polyacrylamide covalently bridged by oxidized sodium alginate for durable wearable sensors. Wang Z; Xu L; Liu W; Chen Y; Yang Q; Tang Z; Tan H; Li N; Du J; Yu M; Xu J Int J Biol Macromol; 2024 Sep; 276(Pt 1):133802. PubMed ID: 38992552 [TBL] [Abstract][Full Text] [Related]
31. 3D Printing of Interpenetrating Network Flexible Hydrogels with Enhancement of Adhesiveness. Zhang L; Du H; Sun X; Cheng F; Lee W; Li J; Dai G; Fang NX; Liu Y ACS Appl Mater Interfaces; 2023 Sep; 15(35):41892-41905. PubMed ID: 37615397 [TBL] [Abstract][Full Text] [Related]
32. A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe Fu H; Wang B; Li J; Xu J; Li J; Zeng J; Gao W; Chen K Mater Horiz; 2022 May; 9(5):1412-1421. PubMed ID: 35322839 [TBL] [Abstract][Full Text] [Related]
33. A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink. Choi KY; Ajiteru O; Hong H; Suh YJ; Sultan MT; Lee H; Lee JS; Lee YJ; Lee OJ; Kim SH; Park CH Acta Biomater; 2023 Jul; 164():159-174. PubMed ID: 37121370 [TBL] [Abstract][Full Text] [Related]
34. Multifunctional conductive hydrogels and their applications as smart wearable devices. Chen Z; Chen Y; Hedenqvist MS; Chen C; Cai C; Li H; Liu H; Fu J J Mater Chem B; 2021 Mar; 9(11):2561-2583. PubMed ID: 33599653 [TBL] [Abstract][Full Text] [Related]
36. A Skin-Inspired Multifunctional Conductive Hydrogel with High Stretchable, Adhesive, Healable, and Decomposable Properties for Highly Sensitive Dual-Sensing of Temperature and Strain. Ge SJ; Liu SN; Gu ZZ; Xu H Small Methods; 2023 Nov; 7(11):e2300749. PubMed ID: 37572378 [TBL] [Abstract][Full Text] [Related]
37. Wearable strain sensors based on casein-driven tough, adhesive and anti-freezing hydrogels for monitoring human-motion. Guan L; Yan S; Liu X; Li X; Gao G J Mater Chem B; 2019 Sep; 7(34):5230-5236. PubMed ID: 31378805 [TBL] [Abstract][Full Text] [Related]
38. Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors. Zhang X; Chen J; He J; Bai Y; Zeng H J Colloid Interface Sci; 2021 Mar; 585():420-432. PubMed ID: 33268058 [TBL] [Abstract][Full Text] [Related]
39. The Mechanics of Bioinspired Stiff-to-Compliant Multi-Material 3D-Printed Interfaces. Frenkel D; Ginsbury E; Sharabi M Biomimetics (Basel); 2022 Oct; 7(4):. PubMed ID: 36278727 [TBL] [Abstract][Full Text] [Related]
40. Press-N-Go On-Skin Sensor with High Interfacial Toughness for Continuous Healthcare Monitoring. Hou C; Cao C; Ma R; Ai L; Hu Z; Huang Y; Yao X ACS Appl Mater Interfaces; 2023 Mar; 15(8):11379-11387. PubMed ID: 36791211 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]