These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 39222803)
1. Integrating machine learning for enhanced wildfire severity prediction: A study in the Upper Colorado River basin. Han H; Abitew TA; Bazrkar H; Park S; Jeong J Sci Total Environ; 2024 Nov; 952():175914. PubMed ID: 39222803 [TBL] [Abstract][Full Text] [Related]
2. Spatio-temporal feature attribution of European summer wildfires with Explainable Artificial Intelligence (XAI). Li H; Vulova S; Rocha AD; Kleinschmit B Sci Total Environ; 2024 Mar; 916():170330. PubMed ID: 38278254 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the Spatial and Temporal Changes of NDVI and Its Driving Factors in the Wei and Jing River Basins. Huang C; Yang Q; Huang W Int J Environ Res Public Health; 2021 Nov; 18(22):. PubMed ID: 34831620 [TBL] [Abstract][Full Text] [Related]
4. Assessing a machine learning-based downscaling framework for obtaining 1km daily precipitation from GPM data. Sun T; Yan N; Zhu W; Zhuang Q Heliyon; 2024 Sep; 10(17):e36368. PubMed ID: 39286221 [TBL] [Abstract][Full Text] [Related]
5. A multi-modal wildfire prediction and early-warning system based on a novel machine learning framework. Bhowmik RT; Jung YS; Aguilera JA; Prunicki M; Nadeau K J Environ Manage; 2023 Sep; 341():117908. PubMed ID: 37182403 [TBL] [Abstract][Full Text] [Related]
6. A wildfire growth prediction and evaluation approach using Landsat and MODIS data. Radočaj D; Jurišić M; Gašparović M J Environ Manage; 2022 Feb; 304():114351. PubMed ID: 35021596 [TBL] [Abstract][Full Text] [Related]
7. High-resolution mapping of wildfire drivers in California based on machine learning. Qiu L; Chen J; Fan L; Sun L; Zheng C Sci Total Environ; 2022 Aug; 833():155155. PubMed ID: 35413339 [TBL] [Abstract][Full Text] [Related]
8. Hydrological model parameter regionalization: Runoff estimation using machine learning techniques in the Tha Chin River Basin, Thailand. Hlaing PT; Humphries UW; Waqas M MethodsX; 2024 Dec; 13():102792. PubMed ID: 39022181 [TBL] [Abstract][Full Text] [Related]
10. Machine learning models for predicting vegetation conditions in Mahanadi River basin. Raj DK; Gopikrishnan T Environ Monit Assess; 2023 Nov; 195(12):1401. PubMed ID: 37917222 [TBL] [Abstract][Full Text] [Related]
11. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Zald HSJ; Dunn CJ Ecol Appl; 2018 Jun; 28(4):1068-1080. PubMed ID: 29698575 [TBL] [Abstract][Full Text] [Related]
12. Machine learning approach for the estimation of missing precipitation data: a case study of South Korea. Han H; Kim B; Kim K; Kim D; Kim HS Water Sci Technol; 2023 Aug; 88(3):556-571. PubMed ID: 37578874 [TBL] [Abstract][Full Text] [Related]
13. A novel ensemble-based statistical approach to estimate daily wildfire-specific PM Aguilera R; Luo N; Basu R; Wu J; Clemesha R; Gershunov A; Benmarhnia T Environ Int; 2023 Jan; 171():107719. PubMed ID: 36592523 [TBL] [Abstract][Full Text] [Related]
14. Vegetation structure parameters determine high burn severity likelihood in different ecosystem types: A case study in a burned Mediterranean landscape. Fernández-Guisuraga JM; Suárez-Seoane S; García-Llamas P; Calvo L J Environ Manage; 2021 Jun; 288():112462. PubMed ID: 33831636 [TBL] [Abstract][Full Text] [Related]
15. A river basin spatial model to quantitively advance understanding of riverine tree response dynamics to water availability and hydrological management. Doody TM; Gao S; Vervoort W; Pritchard J; Davies M; Nolan M; Nagler PL J Environ Manage; 2023 Apr; 332():117393. PubMed ID: 36739773 [TBL] [Abstract][Full Text] [Related]
16. Extended seasonal prediction of spring precipitation over the Upper Colorado River Basin. Zhao S; Fu R; Anderson ML; Chakraborty S; Jiang JH; Su H; Gu Y Clim Dyn; 2023; 60(5-6):1815-1829. PubMed ID: 36936712 [TBL] [Abstract][Full Text] [Related]
17. A framework for separating natural and anthropogenic contributions to evapotranspiration of human-managed land covers in watersheds based on machine learning. Zeng H; Elnashar A; Wu B; Zhang M; Zhu W; Tian F; Ma Z Sci Total Environ; 2022 Jun; 823():153726. PubMed ID: 35150693 [TBL] [Abstract][Full Text] [Related]
18. Predicting potential wildfire severity across Southern Europe with global data sources. Fernández-García V; Beltrán-Marcos D; Fernández-Guisuraga JM; Marcos E; Calvo L Sci Total Environ; 2022 Jul; 829():154729. PubMed ID: 35331756 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed. Anmala J; Turuganti V Water Environ Res; 2021 Nov; 93(11):2360-2373. PubMed ID: 34528328 [TBL] [Abstract][Full Text] [Related]
20. Refining the cheatgrass-fire cycle in the Great Basin: Precipitation timing and fine fuel composition predict wildfire trends. Pilliod DS; Welty JL; Arkle RS Ecol Evol; 2017 Oct; 7(19):8126-8151. PubMed ID: 29043061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]