These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39222813)
1. Amplified photosynthetic responses to drought events offset the positive effects of warming on arid desert plants. Lin Y; Xie T; Li S; Li X; Liu W Sci Total Environ; 2024 Nov; 952():175899. PubMed ID: 39222813 [TBL] [Abstract][Full Text] [Related]
2. Climate warming alters photosynthetic responses to elevated CO Sage E; Heisler-White J; Morgan J; Pendall E; Williams DG Am J Bot; 2020 Sep; 107(9):1238-1252. PubMed ID: 32931042 [TBL] [Abstract][Full Text] [Related]
3. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Reich PB; Sendall KM; Stefanski A; Rich RL; Hobbie SE; Montgomery RA Nature; 2018 Oct; 562(7726):263-267. PubMed ID: 30283137 [TBL] [Abstract][Full Text] [Related]
4. Water relations and photosynthesis along an elevation gradient for Artemisia tridentata during an historic drought. Reed CC; Loik ME Oecologia; 2016 May; 181(1):65-76. PubMed ID: 26822944 [TBL] [Abstract][Full Text] [Related]
5. Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in northern China. Wei H; Luo T; Wu B Ann Bot; 2016 Sep; 118(3):541-53. PubMed ID: 27443298 [TBL] [Abstract][Full Text] [Related]
6. Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. Albert KR; Ro-Poulsen H; Mikkelsen TN; Michelsen A; van der Linden L; Beier C J Exp Bot; 2011 Aug; 62(12):4253-66. PubMed ID: 21586430 [TBL] [Abstract][Full Text] [Related]
7. [Eco-physiological responses and related adjustment mechanisms of Artemisia ordosica and Caragana korshinskii under different configuration modes to precipitation variation]. Zhou HY; Wang YJ; Fan F; Fan HW Ying Yong Sheng Tai Xue Bao; 2013 Jan; 24(1):32-40. PubMed ID: 23717987 [TBL] [Abstract][Full Text] [Related]
8. Photosynthesis and growth reduction with warming are driven by nonstomatal limitations in a Mediterranean semi-arid shrub. León-Sánchez L; Nicolás E; Nortes PA; Maestre FT; Querejeta JI Ecol Evol; 2016 May; 6(9):2725-38. PubMed ID: 27066247 [TBL] [Abstract][Full Text] [Related]
9. Regulation of warming on the mixed decomposition of Luo K; Jia X; Mu YM; Gao SJ; Hao SR; Zha TS Ying Yong Sheng Tai Xue Bao; 2024 Jul; 35(7):1753-1761. PubMed ID: 39233403 [TBL] [Abstract][Full Text] [Related]
10. Physiological and biochemical responses of Quercus pubescens to air warming and drought on acidic and calcareous soils. Contran N; Günthardt-Goerg MS; Kuster TM; Cerana R; Crosti P; Paoletti E Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():157-68. PubMed ID: 22672383 [TBL] [Abstract][Full Text] [Related]
11. Water relations and photosynthetic capacity of two species of Calotropis in a tropical semi-arid ecosystem. Tezara W; Colombo R; Coronel I; Marín O Ann Bot; 2011 Mar; 107(3):397-405. PubMed ID: 21149276 [TBL] [Abstract][Full Text] [Related]
12. [Environmental regulation of water use efficiency in Zhai SC; Wang TJ; Li XH; Hao SR; Jia X; Zha TS; Liu P Ying Yong Sheng Tai Xue Bao; 2024 Apr; 35(4):997-1006. PubMed ID: 38884234 [TBL] [Abstract][Full Text] [Related]
13. Responses of photosynthesis and component processes to drought and temperature stress: are Mediterranean trees fit for climate change? Sperlich D; Chang CT; Peñuelas J; Sabaté S Tree Physiol; 2019 Dec; 39(11):1783-1805. PubMed ID: 31553458 [TBL] [Abstract][Full Text] [Related]
14. Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature. Arend M; Brem A; Kuster TM; Günthardt-Goerg MS Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():169-76. PubMed ID: 22776350 [TBL] [Abstract][Full Text] [Related]
15. The effect of summer drought on the yield of Arundo donax is reduced by the retention of photosynthetic capacity and leaf growth later in the growing season. Haworth M; Marino G; Riggi E; Avola G; Brunetti C; Scordia D; Testa G; Thiago Gaudio Gomes M; Loreto F; Luciano Cosentino S; Centritto M Ann Bot; 2019 Oct; 124(4):567-580. PubMed ID: 30566593 [TBL] [Abstract][Full Text] [Related]
16. In situ warming in the Antarctic: effects on growth and photosynthesis in Antarctic vascular plants. Sáez PL; Cavieres LA; Galmés J; Gil-Pelegrín E; Peguero-Pina JJ; Sancho-Knapik D; Vivas M; Sanhueza C; Ramírez CF; Rivera BK; Corcuera LJ; Bravo LA New Phytol; 2018 Jun; 218(4):1406-1418. PubMed ID: 29682746 [TBL] [Abstract][Full Text] [Related]
17. Physiological response and photosynthetic recovery to an extreme drought: Evidence from plants in a dry-hot valley savanna of Southwest China. Yang D; Wang YS; Wang Q; Ke Y; Zhang YB; Zhang SB; Zhang YJ; McDowell NG; Zhang JL Sci Total Environ; 2023 Apr; 868():161711. PubMed ID: 36682563 [TBL] [Abstract][Full Text] [Related]
18. Atmospheric drought and low light impede mycorrhizal effects on leaf photosynthesis-a glasshouse study on tomato under naturally fluctuating environmental conditions. Bitterlich M; Franken P; Graefe J Mycorrhiza; 2019 Jan; 29(1):13-28. PubMed ID: 30382414 [TBL] [Abstract][Full Text] [Related]
19. Effects of elevated CO₂, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Xu Z; Shimizu H; Ito S; Yagasaki Y; Zou C; Zhou G; Zheng Y Planta; 2014 Feb; 239(2):421-35. PubMed ID: 24463932 [TBL] [Abstract][Full Text] [Related]
20. Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts. Feller U J Plant Physiol; 2016 Sep; 203():84-94. PubMed ID: 27083537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]