These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 39222913)

  • 1. Deep integration of low-cost liquid handling robots in an industrial pharmaceutical development environment.
    Thieme A; Renwick S; Marschmann M; Guimaraes PI; Weissenborn S; Clifton J
    SLAS Technol; 2024 Oct; 29(5):100180. PubMed ID: 39222913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piston-driven automated liquid handlers.
    Schuster J; Kamuju V; Zhou J; Mathaes R
    SLAS Technol; 2024 Jun; 29(3):100128. PubMed ID: 38508238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PaR-PaR laboratory automation platform.
    Linshiz G; Stawski N; Poust S; Bi C; Keasling JD; Hillson NJ
    ACS Synth Biol; 2013 May; 2(5):216-22. PubMed ID: 23654257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unlocking the efficiency of genomics laboratories with robotic liquid-handling.
    Tegally H; San JE; Giandhari J; de Oliveira T
    BMC Genomics; 2020 Oct; 21(1):729. PubMed ID: 33081689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of low-cost laboratory automation processes using AutoIt and 4-axis robots.
    Rupp N; Peschke K; Köppl M; Drissner D; Zuchner T
    SLAS Technol; 2022 Oct; 27(5):312-318. PubMed ID: 35830957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automation of yeast spot assays using an affordable liquid handling robot.
    Taguchi S; Suda Y; Irie K; Ozaki H
    SLAS Technol; 2023 Apr; 28(2):55-62. PubMed ID: 36503082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automation of biochemical assays using an open-sourced, inexpensive robotic liquid handler.
    Moukarzel G; Wang Y; Xin W; Hofmann C; Joshi A; Loughney JW; Bowman A
    SLAS Technol; 2024 Dec; 29(6):100205. PubMed ID: 39396729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Capabilities of EvoBot: A Modular, Open-Source Liquid-Handling Robot.
    Nejatimoharrami F; Faina A; Stoy K
    SLAS Technol; 2017 Oct; 22(5):500-506. PubMed ID: 28378607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shotgun Proteomics Sample Processing Automated by an Open-Source Lab Robot.
    Han Y; Thomas CT; Wennersten SA; Lau E; Lam MPY
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34779440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adapting a Low-Cost and Open-Source Commercial Pipetting Robot for Nanoliter Liquid Handling.
    Councill EEAW; Axtell NB; Truong T; Liang Y; Aposhian AL; Webber KGI; Zhu Y; Cong Y; Carson RH; Kelly RT
    SLAS Technol; 2021 Jun; 26(3):311-319. PubMed ID: 33213279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating Mobile Robots into Automated Laboratory Processes: A Suitable Workflow Management System.
    Thurow K; Gu X; Göde B; Roddelkopf T; Fleischer H; Stoll N; Neubert S
    SLAS Technol; 2021 Apr; 26(2):232-235. PubMed ID: 33181045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards robotic laboratory automation plug & play: Reference architecture model for robot integration.
    Wolf Á; Zsoldos P; Széll K; Galambos P
    SLAS Technol; 2024 Aug; 29(4):100168. PubMed ID: 39098589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Laboratory Automation Protocol (LAP) Format and Repository: A Platform for Enhancing Workflow Efficiency in Synthetic Biology.
    Anhel AM; Alejaldre L; Goñi-Moreno Á
    ACS Synth Biol; 2023 Dec; 12(12):3514-3520. PubMed ID: 37982688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SiLA: Basic standards for rapid integration in laboratory automation.
    Bär H; Hochstrasser R; Papenfub B
    J Lab Autom; 2012 Apr; 17(2):86-95. PubMed ID: 22357556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular, multi-robot integration of laboratories: an autonomous workflow for solid-state chemistry.
    Lunt AM; Fakhruldeen H; Pizzuto G; Longley L; White A; Rankin N; Clowes R; Alston B; Gigli L; Day GM; Cooper AI; Chong SY
    Chem Sci; 2024 Feb; 15(7):2456-2463. PubMed ID: 38362408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Analytical Measurement Processes Using a Dual-Arm Robotic System.
    Fleischer H; Joshi S; Roddelkopf T; Klos M; Thurow K
    SLAS Technol; 2019 Jun; 24(3):354-356. PubMed ID: 30816065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standardizing Automated DNA Assembly: Best Practices, Metrics, and Protocols Using Robots.
    Walsh DI; Pavan M; Ortiz L; Wick S; Bobrow J; Guido NJ; Leinicke S; Fu D; Pandit S; Qin L; Carr PA; Densmore D
    SLAS Technol; 2019 Jun; 24(3):282-290. PubMed ID: 30768372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation Foundry: Automated and F.A.I.R. Molecular Modeling.
    Gygli G; Pleiss J
    J Chem Inf Model; 2020 Apr; 60(4):1922-1927. PubMed ID: 32240586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic cap-to-dispense (μCD): a universal microfluidic-robotic interface for automated pipette-free high-precision liquid handling.
    Wang J; Deng K; Zhou C; Fang Z; Meyer C; Deshpande KU; Li Z; Mi X; Luo Q; Hammock BD; Tan C; Chen Y; Pan T
    Lab Chip; 2019 Oct; 19(20):3405-3415. PubMed ID: 31501848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A versatile and low-cost open source pipetting robot for automation of toxicological and ecotoxicological bioassays.
    Steffens S; Nüßer L; Seiler TB; Ruchter N; Schumann M; Döring R; Cofalla C; Ostfeld A; Salomons E; Schüttrumpf H; Hollert H; Brinkmann M
    PLoS One; 2017; 12(6):e0179636. PubMed ID: 28622373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.