These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 39222913)

  • 21. SiLA 2: The Next Generation Lab Automation Standard.
    Juchli D
    Adv Biochem Eng Biotechnol; 2022; 182():147-174. PubMed ID: 35639108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Data Transformation Methodology to Create Findable, Accessible, Interoperable, and Reusable Health Data: Software Design, Development, and Evaluation Study.
    Sinaci AA; Gencturk M; Teoman HA; Laleci Erturkmen GB; Alvarez-Romero C; Martinez-Garcia A; Poblador-Plou B; Carmona-Pírez J; Löbe M; Parra-Calderon CL
    J Med Internet Res; 2023 Mar; 25():e42822. PubMed ID: 36884270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexible End2End Workflow Automation of Hit-Discovery Research.
    Holzmüller-Laue S; Göde B; Thurow K
    J Lab Autom; 2014 Aug; 19(4):349-61. PubMed ID: 24464814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robotic liquid handling and automation in epigenetics.
    Gaisford W
    J Lab Autom; 2012 Oct; 17(5):327-9. PubMed ID: 22933618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Flexible Workflow for Automated Bioluminescent Kinase Selectivity Profiling.
    Worzella T; Butzler M; Hennek J; Hanson S; Simdon L; Goueli S; Cowan C; Zegzouti H
    SLAS Technol; 2017 Apr; 22(2):153-162. PubMed ID: 28095176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FocA: A deep learning tool for reliable, near-real-time imaging focus analysis in automated cell assay pipelines.
    Winchell J; Comolet G; Buckley-Herd G; Hutson D; Bose N; Paull D; Migliori B
    SLAS Discov; 2023 Oct; 28(7):306-315. PubMed ID: 37573010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A user-friendly robotic sample preparation program for fully automated biological sample pipetting and dilution to benefit the regulated bioanalysis.
    Jiang H; Ouyang Z; Zeng J; Yuan L; Zheng N; Jemal M; Arnold ME
    J Lab Autom; 2012 Jun; 17(3):211-21. PubMed ID: 22357562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PLACE: an open-source python package for laboratory automation, control, and experimentation.
    Johnson JL; Tom Wörden H; van Wijk K
    J Lab Autom; 2015 Feb; 20(1):10-6. PubMed ID: 25304874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated Planning Enables Complex Protocols on Liquid-Handling Robots.
    Whitehead E; Rudolf F; Kaltenbach HM; Stelling J
    ACS Synth Biol; 2018 Mar; 7(3):922-932. PubMed ID: 29486123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated gene data integration with Databio.
    Reid RW; Ferrier JW; Jay JJ
    BMC Res Notes; 2020 Apr; 13(1):195. PubMed ID: 32238171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laboratory Automation and Middleware.
    Riben M
    Surg Pathol Clin; 2015 Jun; 8(2):175-86. PubMed ID: 26065792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automation assisted anaerobic phenotyping for metabolic engineering.
    Raj K; Venayak N; Diep P; Golla SA; Yakunin AF; Mahadevan R
    Microb Cell Fact; 2021 Sep; 20(1):184. PubMed ID: 34556155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioinformatics tools developed to support BioCompute Objects.
    Patel JA; Dean DA; King CH; Xiao N; Koc S; Minina E; Golikov A; Brooks P; Kahsay R; Navelkar R; Ray M; Roberson D; Armstrong C; Mazumder R; Keeney J
    Database (Oxford); 2021 Mar; 2021():. PubMed ID: 33784373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards robotic laboratory automation Plug & Play: The "LAPP" framework.
    Wolf Á; Wolton D; Trapl J; Janda J; Romeder-Finger S; Gatternig T; Farcet JB; Galambos P; Széll K
    SLAS Technol; 2022 Feb; 27(1):18-25. PubMed ID: 35058216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated data collection for macromolecular crystallography.
    Winter G; McAuley KE
    Methods; 2011 Sep; 55(1):81-93. PubMed ID: 21763424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Liquid-handling Lego robots and experiments for STEM education and research.
    Gerber LC; Calasanz-Kaiser A; Hyman L; Voitiuk K; Patil U; Riedel-Kruse IH
    PLoS Biol; 2017 Mar; 15(3):e2001413. PubMed ID: 28323828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of Microplate-Compatible Illumination Panels for a Semiautomated Benchtop Pipetting System.
    Baillargeon P; Coss-Flores K; Singhera F; Shumate J; Williams H; DeLuca L; Spicer TP; Scampavia L
    SLAS Technol; 2019 Aug; 24(4):399-407. PubMed ID: 30698997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Making Biomedical Research Software FAIR: Actionable Step-by-step Guidelines with a User-support Tool.
    Patel B; Soundarajan S; Ménager H; Hu Z
    Sci Data; 2023 Aug; 10(1):557. PubMed ID: 37612312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of parallelized bioreactors I: dynamic scheduling software for efficient bioprocess management in high-throughput systems.
    Bromig L; von den Eichen N; Weuster-Botz D
    Bioprocess Biosyst Eng; 2022 Dec; 45(12):1927-1937. PubMed ID: 36255464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly Versatile Cloud-Based Automation Solution for the Remote Design and Execution of Experiment Protocols during the COVID-19 Pandemic.
    Zucchelli P; Horak G; Skinner N
    SLAS Technol; 2021 Apr; 26(2):127-139. PubMed ID: 33210978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.