These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 39223130)
1. Pathway decisions for reuse and recycling of retired lithium-ion batteries considering economic and environmental functions. Ma R; Tao S; Sun X; Ren Y; Sun C; Ji G; Xu J; Wang X; Zhang X; Wu Q; Zhou G Nat Commun; 2024 Sep; 15(1):7641. PubMed ID: 39223130 [TBL] [Abstract][Full Text] [Related]
2. Environmental impact assessment of second life and recycling for LiFePO Wang Y; Tang B; Shen M; Wu Y; Qu S; Hu Y; Feng Y J Environ Manage; 2022 Jul; 314():115083. PubMed ID: 35447455 [TBL] [Abstract][Full Text] [Related]
3. Environmental Benefit Assessment of Second-Life Use of Electric Vehicle Lithium-Ion Batteries in Multiple Scenarios Considering Performance Degradation and Economic Value. Cui J; Tan Q; Liu L; Li J Environ Sci Technol; 2023 Jun; 57(23):8559-8567. PubMed ID: 37272409 [TBL] [Abstract][Full Text] [Related]
4. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies. Quan J; Zhao S; Song D; Wang T; He W; Li G Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948 [TBL] [Abstract][Full Text] [Related]
5. Global material flow analysis of end-of-life of lithium nickel manganese cobalt oxide batteries from battery electric vehicles. Shafique M; Akbar A; Rafiq M; Azam A; Luo X Waste Manag Res; 2023 Feb; 41(2):376-388. PubMed ID: 36373335 [TBL] [Abstract][Full Text] [Related]
6. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China. Jiang S; Hua H; Zhang L; Liu X; Wu H; Yuan Z Sci Total Environ; 2022 Mar; 811():152224. PubMed ID: 34896143 [TBL] [Abstract][Full Text] [Related]
7. Toward sustainable and systematic recycling of spent rechargeable batteries. Zhang X; Li L; Fan E; Xue Q; Bian Y; Wu F; Chen R Chem Soc Rev; 2018 Oct; 47(19):7239-7302. PubMed ID: 30124695 [TBL] [Abstract][Full Text] [Related]
8. Circularity of Lithium-Ion Battery Materials in Electric Vehicles. Dunn J; Slattery M; Kendall A; Ambrose H; Shen S Environ Sci Technol; 2021 Apr; 55(8):5189-5198. PubMed ID: 33764763 [TBL] [Abstract][Full Text] [Related]
9. Uncovering the in-use metal stocks and implied recycling potential in electric vehicle batteries considering cascaded use: a case study of China. Yang H; Song X; Zhang X; Lu B; Yang D; Li B Environ Sci Pollut Res Int; 2021 Sep; 28(33):45867-45878. PubMed ID: 33884548 [TBL] [Abstract][Full Text] [Related]
10. Life cycle assessment of secondary use and physical recycling of lithium-ion batteries retired from electric vehicles in China. Yang H; Hu X; Zhang G; Dou B; Cui G; Yang Q; Yan X Waste Manag; 2024 Apr; 178():168-175. PubMed ID: 38401430 [TBL] [Abstract][Full Text] [Related]
11. Assessment of end-of-life electric vehicle batteries in China: Future scenarios and economic benefits. Jiang S; Zhang L; Hua H; Liu X; Wu H; Yuan Z Waste Manag; 2021 Nov; 135():70-78. PubMed ID: 34478950 [TBL] [Abstract][Full Text] [Related]
12. A review of improvements on electric vehicle battery. Koech AK; Mwandila G; Mulolani F Heliyon; 2024 Aug; 10(15):e34806. PubMed ID: 39170484 [TBL] [Abstract][Full Text] [Related]
13. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries. Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572 [TBL] [Abstract][Full Text] [Related]
14. The Current Process for the Recycling of Spent Lithium Ion Batteries. Zhou LF; Yang D; Du T; Gong H; Luo WB Front Chem; 2020; 8():578044. PubMed ID: 33344413 [TBL] [Abstract][Full Text] [Related]
15. Circular economy strategies for mitigating metals shortages in electric vehicle batteries under China's carbon-neutral target. Hu Z; Yu B; Daigo I; Tan J; Sun F; Zhang S J Environ Manage; 2024 Feb; 352():120079. PubMed ID: 38242028 [TBL] [Abstract][Full Text] [Related]
16. A review on the recycling of spent lithium iron phosphate batteries. Zhao T; Li W; Traversy M; Choi Y; Ghahreman A; Zhao Z; Zhang C; Zhao W; Song Y J Environ Manage; 2024 Feb; 351():119670. PubMed ID: 38039588 [TBL] [Abstract][Full Text] [Related]
17. Assessment of an eco-efficient process for the optimization of metal recovery in lithium cobalt oxide and lithium nickel manganese cobalt oxide batteries. Barros TV; de Oliveira JA; Dos Santos MP; Bispo DF; Freitas LDS; Jegatheesan V; Cardozo-Filho L Chemosphere; 2024 Sep; 364():143209. PubMed ID: 39216553 [TBL] [Abstract][Full Text] [Related]
18. Fire Tests on E-vehicle Battery Cells and Packs. Sturk D; Hoffmann L; Ahlberg Tidblad A Traffic Inj Prev; 2015; 16 Suppl 1():S159-64. PubMed ID: 25714114 [TBL] [Abstract][Full Text] [Related]
19. Estimating the environmental impacts of global lithium-ion battery supply chain: A temporal, geographical, and technological perspective. Llamas-Orozco JA; Meng F; Walker GS; Abdul-Manan AFN; MacLean HL; Posen ID; McKechnie J PNAS Nexus; 2023 Nov; 2(11):pgad361. PubMed ID: 38034093 [TBL] [Abstract][Full Text] [Related]
20. Carbon emission assessment of lithium iron phosphate batteries throughout lifecycle under communication base station in China. Lai X; Wang Y; Chen Q; Gu H; Zheng Y Sci Total Environ; 2024 Nov; 949():175123. PubMed ID: 39084392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]