These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 39223152)
1. Deep learning-based virtual staining, segmentation, and classification in label-free photoacoustic histology of human specimens. Yoon C; Park E; Misra S; Kim JY; Baik JW; Kim KG; Jung CK; Kim C Light Sci Appl; 2024 Sep; 13(1):226. PubMed ID: 39223152 [TBL] [Abstract][Full Text] [Related]
2. Real-time three-dimensional histology-like imaging by label-free nonlinear optical microscopy. Sun Y; You S; Du X; Spaulding A; Liu ZG; Chaney EJ; Spillman DR; Marjanovic M; Tu H; Boppart SA Quant Imaging Med Surg; 2020 Nov; 10(11):2177-2190. PubMed ID: 33139997 [TBL] [Abstract][Full Text] [Related]
3. MTU: A multi-tasking U-net with hybrid convolutional learning and attention modules for cancer classification and gland Segmentation in Colon Histopathological Images. Dabass M; Vashisth S; Vig R Comput Biol Med; 2022 Nov; 150():106095. PubMed ID: 36179516 [TBL] [Abstract][Full Text] [Related]
4. Virtual Staining, Segmentation, and Classification of Blood Smears for Label-Free Hematology Analysis. Kaza N; Ojaghi A; Robles FE BME Front; 2022; 2022():9853606. PubMed ID: 37850166 [No Abstract] [Full Text] [Related]
5. Lung Cancer Diagnosis on Virtual Histologically Stained Tissue Using Weakly Supervised Learning. Chen Z; Wong IHM; Dai W; Lo CTK; Wong TTW Mod Pathol; 2024 Jun; 37(6):100487. PubMed ID: 38588884 [TBL] [Abstract][Full Text] [Related]
6. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. Janowczyk A; Madabhushi A J Pathol Inform; 2016; 7():29. PubMed ID: 27563488 [TBL] [Abstract][Full Text] [Related]
7. Comparison of deep learning models for digital H&E staining from unpaired label-free multispectral microscopy images. Salido J; Vallez N; González-López L; Deniz O; Bueno G Comput Methods Programs Biomed; 2023 Jun; 235():107528. PubMed ID: 37040684 [TBL] [Abstract][Full Text] [Related]
8. The effect of neural network architecture on virtual H&E staining: Systematic assessment of histological feasibility. Khan U; Koivukoski S; Valkonen M; Latonen L; Ruusuvuori P Patterns (N Y); 2023 May; 4(5):100725. PubMed ID: 37223268 [TBL] [Abstract][Full Text] [Related]
9. Virtual histological staining of label-free total absorption photoacoustic remote sensing (TA-PARS). Boktor M; Ecclestone BR; Pekar V; Dinakaran D; Mackey JR; Fieguth P; Haji Reza P Sci Rep; 2022 Jun; 12(1):10296. PubMed ID: 35717539 [TBL] [Abstract][Full Text] [Related]
10. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. Chaitanya K; Erdil E; Karani N; Konukoglu E Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649 [TBL] [Abstract][Full Text] [Related]
11. The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification. Altini N; Marvulli TM; Zito FA; Caputo M; Tommasi S; Azzariti A; Brunetti A; Prencipe B; Mattioli E; De Summa S; Bevilacqua V Comput Methods Programs Biomed; 2023 Jun; 234():107511. PubMed ID: 37011426 [TBL] [Abstract][Full Text] [Related]
12. Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation. Umapathy L; Brown T; Mushtaq R; Greenhill M; Lu J; Martin D; Altbach M; Bilgin A Med Phys; 2024 Apr; 51(4):2707-2720. PubMed ID: 37956263 [TBL] [Abstract][Full Text] [Related]
13. Biopsy-free in vivo virtual histology of skin using deep learning. Li J; Garfinkel J; Zhang X; Wu D; Zhang Y; de Haan K; Wang H; Liu T; Bai B; Rivenson Y; Rubinstein G; Scumpia PO; Ozcan A Light Sci Appl; 2021 Nov; 10(1):233. PubMed ID: 34795202 [TBL] [Abstract][Full Text] [Related]
14. Deep learning enables ultraviolet photoacoustic microscopy based histological imaging with near real-time virtual staining. Kang L; Li X; Zhang Y; Wong TTW Photoacoustics; 2022 Mar; 25():100308. PubMed ID: 34703763 [TBL] [Abstract][Full Text] [Related]
15. Epithelium segmentation and automated Gleason grading of prostate cancer via deep learning in label-free multiphoton microscopic images. Yang Q; Xu Z; Liao C; Cai J; Huang Y; Chen H; Tao X; Huang Z; Chen J; Dong J; Zhu X J Biophotonics; 2020 Feb; 13(2):e201900203. PubMed ID: 31710780 [TBL] [Abstract][Full Text] [Related]
17. Multi-class classification of thyroid nodules from automatic segmented ultrasound images: Hybrid ResNet based UNet convolutional neural network approach. Gökmen Inan N; Kocadağlı O; Yıldırım D; Meşe İ; Kovan Ö Comput Methods Programs Biomed; 2024 Jan; 243():107921. PubMed ID: 37950926 [TBL] [Abstract][Full Text] [Related]
18. A Cascaded Deep Learning Framework for Segmentation of Nuclei in Digital Histology Images. Saednia K; Tran WT; Sadeghi-Naini A Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4764-4767. PubMed ID: 36086360 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning for Virtual Histological Staining of Bright-Field Microscopic Images of Unlabeled Carotid Artery Tissue. Li D; Hui H; Zhang Y; Tong W; Tian F; Yang X; Liu J; Chen Y; Tian J Mol Imaging Biol; 2020 Oct; 22(5):1301-1309. PubMed ID: 32514884 [TBL] [Abstract][Full Text] [Related]
20. Optimized detection and segmentation of nuclei in gastric cancer images using stain normalization and blurred artifact removal. Martos O; Hoque MZ; Keskinarkaus A; Kemi N; Näpänkangas J; Eskuri M; Pohjanen VM; Kauppila JH; Seppänen T Pathol Res Pract; 2023 Aug; 248():154694. PubMed ID: 37494804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]