These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 39223290)
1. Assessment of portable X-ray fluorescence (pXRF) for plant-available nutrient prediction in biochar-amended soils. Antonangelo J; Zhang H Sci Rep; 2024 Sep; 14(1):20377. PubMed ID: 39223290 [TBL] [Abstract][Full Text] [Related]
2. Nutrient and toxic elements in soils and plants across 10 urban community gardens: Comparing pXRF and ICP-based soil measurements. McStay AC; Walser SL; Sirkovich EC; Perdrial N; Richardson JB J Environ Qual; 2022 May; 51(3):439-450. PubMed ID: 35419845 [TBL] [Abstract][Full Text] [Related]
3. Portable X-ray fluorescence (pXRF) calibration for analysis of nutrient concentrations and trace element contaminants in fertilisers. Acquah GE; Hernandez-Allica J; Thomas CL; Dunham SJ; Towett EK; Drake LB; Shepherd KD; McGrath SP; Haefele SM PLoS One; 2022; 17(1):e0262460. PubMed ID: 35015770 [TBL] [Abstract][Full Text] [Related]
4. Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. Masud MM; Baquy MA; Akhter S; Sen R; Barman A; Khatun MR Ecotoxicol Environ Saf; 2020 Oct; 202():110865. PubMed ID: 32570103 [TBL] [Abstract][Full Text] [Related]
5. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. Manolikaki II; Mangolis A; Diamadopoulos E J Environ Manage; 2016 Oct; 181():536-543. PubMed ID: 27429359 [TBL] [Abstract][Full Text] [Related]
6. Elemental assessment of vegetation via portable X-ray fluorescence (PXRF) spectrometry. McGladdery C; Weindorf DC; Chakraborty S; Li B; Paulette L; Podar D; Pearson D; Kusi NYO; Duda B J Environ Manage; 2018 Mar; 210():210-225. PubMed ID: 29348058 [TBL] [Abstract][Full Text] [Related]
7. In situ investigation of heavy metals at trace concentrations in greenhouse soils via portable X-ray fluorescence spectroscopy. Tian K; Huang B; Xing Z; Hu W Environ Sci Pollut Res Int; 2018 Apr; 25(11):11011-11022. PubMed ID: 29404952 [TBL] [Abstract][Full Text] [Related]
9. Quick Analysis of Organic Amendments via Portable X-ray Fluorescence Spectrometry. López-Núñez R; Ajmal-Poley F; González-Pérez JA; Bello-López MA; Burgos-Doménech P Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31698776 [TBL] [Abstract][Full Text] [Related]
10. Heavy metal phytoavailability in a contaminated soil of northeastern Oklahoma as affected by biochar amendment. Antonangelo JA; Zhang H Environ Sci Pollut Res Int; 2019 Nov; 26(32):33582-33593. PubMed ID: 31586315 [TBL] [Abstract][Full Text] [Related]
11. Rice straw biochar and phosphorus inputs have more positive effects on the yield and nutrient uptake of Lolium multiflorum than arbuscular mycorrhizal fungi in acidic Cd-contaminated soils. Liu M; Che Y; Wang L; Zhao Z; Zhang Y; Wei L; Xiao Y Chemosphere; 2019 Nov; 235():32-39. PubMed ID: 31255763 [TBL] [Abstract][Full Text] [Related]
12. Application of portable X-ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near abandoned mine sites. Jang M Environ Geochem Health; 2010 Jun; 32(3):207-16. PubMed ID: 19768558 [TBL] [Abstract][Full Text] [Related]
13. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry. Hu W; Huang B; Weindorf DC; Chen Y Bull Environ Contam Toxicol; 2014 Apr; 92(4):420-6. PubMed ID: 24585255 [TBL] [Abstract][Full Text] [Related]
14. Correction of in-situ portable X-ray fluorescence (PXRF) data of soil heavy metal for enhancing spatial prediction. Qu M; Chen J; Li W; Zhang C; Wan M; Huang B; Zhao Y Environ Pollut; 2019 Nov; 254(Pt A):112993. PubMed ID: 31401521 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the portable X-ray fluorescence reliability for metal(loid)s detection and soil contamination status. Alqattan ZA; Artiola JF; Walls D; Ramírez-Andreotta MD Environ Monit Assess; 2024 Jul; 196(8):765. PubMed ID: 39073501 [TBL] [Abstract][Full Text] [Related]
17. Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research? Rouillon M; Taylor MP Environ Pollut; 2016 Jul; 214():255-264. PubMed ID: 27100216 [TBL] [Abstract][Full Text] [Related]
18. Assessment of iron-rich tailings via portable X-ray fluorescence spectrometry: the Mariana dam disaster, southeast Brazil. Ferreira GWD; Ribeiro BT; Weindorf DC; Teixeira BI; Chakraborty S; Li B; Guilherme LRG; Scolforo JRS Environ Monit Assess; 2021 Mar; 193(4):203. PubMed ID: 33751261 [TBL] [Abstract][Full Text] [Related]
19. Information depth of elements affects accuracy of parallel pXRF in situ measurements of soils. Hangen E; Čermák P; Geuß U; Hlisnikovský L Environ Monit Assess; 2019 Oct; 191(11):661. PubMed ID: 31650240 [TBL] [Abstract][Full Text] [Related]
20. Detailed characterization of iron-rich tailings after the Fundão dam failure, Brazil, with inclusion of proximal sensors data, as a secure basis for environmental and agricultural restoration. T Silva de Sá R; Tesser Antunes Prianti M; Andrade R; Oliveira Silva A; Rodrigues Batista É; Valentim Dos Santos J; Magno Silva F; Aurélio Carbone Carneiro M; Roberto Guimarães Guilherme L; Chakraborty S; C Weindorf D; Curi N; Henrique Godinho Silva S; Teixeira Ribeiro B Environ Res; 2023 Jul; 228():115858. PubMed ID: 37062481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]