These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 39223671)

  • 1. Targeting TNFR2 for cancer immunotherapy: recent advances and future directions.
    Li L; Ye R; Li Y; Pan H; Han S; Lu Y
    J Transl Med; 2024 Sep; 22(1):812. PubMed ID: 39223671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TNFR2 blockade alone or in combination with PD-1 blockade shows therapeutic efficacy in murine cancer models.
    Case K; Tran L; Yang M; Zheng H; Kuhtreiber WM; Faustman DL
    J Leukoc Biol; 2020 Jun; 107(6):981-991. PubMed ID: 32449229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TNFR2: A Novel Target for Cancer Immunotherapy.
    Vanamee ÉS; Faustman DL
    Trends Mol Med; 2017 Nov; 23(11):1037-1046. PubMed ID: 29032004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TNF Receptor 2 Makes Tumor Necrosis Factor a Friend of Tumors.
    Sheng Y; Li F; Qin Z
    Front Immunol; 2018; 9():1170. PubMed ID: 29892300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic Implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade.
    Genova C; Dellepiane C; Carrega P; Sommariva S; Ferlazzo G; Pronzato P; Gangemi R; Filaci G; Coco S; Croce M
    Front Immunol; 2021; 12():799455. PubMed ID: 35069581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination cancer immunotherapy targeting TNFR2 and PD-1/PD-L1 signaling reduces immunosuppressive effects in the microenvironment of pancreatic tumors.
    Zhang X; Lao M; Xu J; Duan Y; Yang H; Li M; Ying H; He L; Sun K; Guo C; Chen W; Jiang H; Zhang X; Bai X; Liang T
    J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35260434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune checkpoints and cancer development: Therapeutic implications and future directions.
    Mehdizadeh S; Bayatipoor H; Pashangzadeh S; Jafarpour R; Shojaei Z; Motallebnezhad M
    Pathol Res Pract; 2021 Jul; 223():153485. PubMed ID: 34022684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing TNFR2 antagonism for immunotherapy with tumor microenvironment specificity.
    Yang M; Tran L; Torrey H; Song Y; Perkins H; Case K; Zheng H; Takahashi H; Kuhtreiber WM; Faustman DL
    J Leukoc Biol; 2020 Jun; 107(6):971-980. PubMed ID: 32202358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TNFR2: Role in Cancer Immunology and Immunotherapy.
    Yang Y; Islam MS; Hu Y; Chen X
    Immunotargets Ther; 2021; 10():103-122. PubMed ID: 33907692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TNFR2 expression predicts the responses to immune checkpoint inhibitor treatments.
    Liao P; Jiang M; Islam MS; Wang Y; Chen X
    Front Immunol; 2023; 14():1097090. PubMed ID: 36865537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of TNF-α/TNFR2 in regulatory T cells on the microenvironment and progression of gastric cancer.
    Qu Y; Wang X; Bai S; Niu L; Zhao G; Yao Y; Li B; Li H
    Int J Cancer; 2022 Apr; 150(8):1373-1391. PubMed ID: 34766338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy.
    Tang T; Huang X; Zhang G; Hong Z; Bai X; Liang T
    Signal Transduct Target Ther; 2021 Feb; 6(1):72. PubMed ID: 33608497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preserving the CTLA-4 Checkpoint for Safer and More Effective Cancer Immunotherapy.
    Liu Y; Zheng P
    Trends Pharmacol Sci; 2020 Jan; 41(1):4-12. PubMed ID: 31836191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities.
    Hack SP; Zhu AX; Wang Y
    Front Immunol; 2020; 11():598877. PubMed ID: 33250900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy.
    Zhang C; Liu Y
    Front Immunol; 2020; 11():1295. PubMed ID: 32714324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The immunosuppressive landscape in tumor microenvironment.
    Liu W; Zhou H; Lai W; Hu C; Xu R; Gu P; Luo M; Zhang R; Li G
    Immunol Res; 2024 Aug; 72(4):566-582. PubMed ID: 38691319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Next-generation immuno-oncology agents: current momentum shifts in cancer immunotherapy.
    Pan C; Liu H; Robins E; Song W; Liu D; Li Z; Zheng L
    J Hematol Oncol; 2020 Apr; 13(1):29. PubMed ID: 32245497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015.
    Ascierto PA; Agarwala S; Botti G; Cesano A; Ciliberto G; Davies MA; Demaria S; Dummer R; Eggermont AM; Ferrone S; Fu YX; Gajewski TF; Garbe C; Huber V; Khleif S; Krauthammer M; Lo RS; Masucci G; Palmieri G; Postow M; Puzanov I; Silk A; Spranger S; Stroncek DF; Tarhini A; Taube JM; Testori A; Wang E; Wargo JA; Yee C; Zarour H; Zitvogel L; Fox BA; Mozzillo N; Marincola FM; Thurin M
    J Transl Med; 2016 Nov; 14(1):313. PubMed ID: 27846884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy.
    Kim J; Hong J; Lee J; Fakhraei Lahiji S; Kim YH
    J Control Release; 2021 Apr; 332():109-126. PubMed ID: 33571549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance.
    Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX
    Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.