These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 39223694)
61. Research Progress of Prussian Blue and Its Analogs as High-Performance Cathode Nanomaterials for Sodium-Ion Batteries. Yuan T; Chen Y; Gao X; Xu R; Zhang Z; Chen X; Cui L Small Methods; 2024 Aug; 8(8):e2301372. PubMed ID: 38098164 [TBL] [Abstract][Full Text] [Related]
62. Fabrication of a Cation Exchange Membrane with Largely Reduced Anion Permeability for Advanced Aqueous K-ion Battery in an Alkaline-Neutral Electrolyte Decoupling System. Dong W; Li L; Cheng S; Huang L; Yang L; Liu Y; Yao H; Liu C; Liu W; Ji X Small; 2023 Feb; 19(6):e2205970. PubMed ID: 36453593 [TBL] [Abstract][Full Text] [Related]
63. Coordination engineering for iron-based hexacyanoferrate as a high-stability cathode for sodium-ion batteries. Zhong J; Xia L; Chen S; Zhang Z; Pei Y; Chen H; Sun H; Zhu J; Lu B; Zhang Y Proc Natl Acad Sci U S A; 2024 Jul; 121(31):e2319193121. PubMed ID: 39052833 [TBL] [Abstract][Full Text] [Related]
64. Redox Electrolytes-Assisting Aqueous Zn-Based Batteries by Pseudocapacitive Multiple Perovskite Fluorides Cathode and Charge Storage Mechanisms. Wang A; Ding R; Li Y; Liu M; Yang F; Zhang Y; Fang Q; Yan M; Xie J; Chen Z; Yan Z; He Y; Guo J; Sun X; Liu E Small; 2023 Aug; 19(33):e2302333. PubMed ID: 37166023 [TBL] [Abstract][Full Text] [Related]
65. In Situ FTIR-Assisted Synthesis of Nickel Hexacyanoferrate Cathodes for Long-Life Sodium-Ion Batteries. Xu Y; Chang M; Fang C; Liu Y; Qiu Y; Ou M; Peng J; Wei P; Deng Z; Sun S; Sun X; Li Q; Han J; Huang Y ACS Appl Mater Interfaces; 2019 Aug; 11(33):29985-29992. PubMed ID: 31364834 [TBL] [Abstract][Full Text] [Related]
66. An Open-Framework Structured Material: [Ni(en) Zhang D; Sun L; Wang C; Xue Q; Feng J; Ran W; Yan T ACS Appl Mater Interfaces; 2022 Apr; 14(14):16197-16203. PubMed ID: 35362955 [TBL] [Abstract][Full Text] [Related]
67. Ultra-Long Cycle of Prussian Blue Analogs Achieved by Equilibrium Electrolyte for Aqueous Sodium-Ion Batteries. Liu J; Yang C; Wen B; Li B; Liu Y Small; 2023 Nov; 19(46):e2303896. PubMed ID: 37460403 [TBL] [Abstract][Full Text] [Related]
68. Isostructural Synthesis of Iron-Based Prussian Blue Analogs for Sodium-Ion Batteries. Liu Y; Fan S; Gao Y; Liu Y; Zhang H; Chen J; Chen X; Huang J; Liu X; Li L; Qiao Y; Chou S Small; 2023 Oct; 19(43):e2302687. PubMed ID: 37376874 [TBL] [Abstract][Full Text] [Related]
69. Materials Design and Mechanistic Understanding of Tellurium and Tellurium-Sulfur Cathodes for Rechargeable Batteries. Zhang Y; Liu J Acc Chem Res; 2024 Sep; 57(17):2500-2511. PubMed ID: 39137405 [TBL] [Abstract][Full Text] [Related]
70. Thermal Induced Conversion of CoFe Prussian Blue Analogs Nanocubes Wrapped by Doped Carbon Network Exhibiting Fast and Stable Potassium Ion Storage as Anode. Ouyang Y; Li P; Ma Y; Wei J; Tian W; Chen J; Shi J; Zhu Y; Wu J; Wang H Small; 2024 Jun; 20(23):e2308484. PubMed ID: 38143292 [TBL] [Abstract][Full Text] [Related]
71. Prussian Blue: A Potential Material to Improve the Electrochemical Performance of Lithium-Sulfur Batteries. Peng Y; Li B; Wang Y; He X; Huang J; Zhao J ACS Appl Mater Interfaces; 2017 Feb; 9(5):4397-4403. PubMed ID: 27479707 [TBL] [Abstract][Full Text] [Related]
72. Controlled Synthesis of 2D Prussian Blue Analog Nanosheets with Low Coordinated Water Content for High-Performance Lithium Storage. Yin J; Zhou J; Wang Y; Ma Y; Zhou X; Wang G; Yang Y; Lu P; Yu J; Chen Y; Yuan Y; Ye C; Xi S; Fan Z Small Methods; 2022 Dec; 6(12):e2201107. PubMed ID: 36287094 [TBL] [Abstract][Full Text] [Related]
73. Berlin Green with tunable iron content as ultra-high rate host for efficient aqueous ammonium ion storage. Guo YF; Qu JP; Liu XY; Wang PF; Liu ZL; Zhang JH; Yi TF J Colloid Interface Sci; 2024 Aug; 667():607-616. PubMed ID: 38657544 [TBL] [Abstract][Full Text] [Related]
74. Preparation of Low-Defect Manganese-Based Prussian Blue Cathode Materials with Cubic Structure for Sodium-Ion Batteries via Coprecipitation Method. Dong X; Wang H; Wang J; Wang Q; Wang H; Hao W; Lu F Molecules; 2023 Oct; 28(21):. PubMed ID: 37959684 [TBL] [Abstract][Full Text] [Related]
75. High Crystalline Prussian White Nanocubes as a Promising Cathode for Sodium-ion Batteries. Li C; Zang R; Li P; Man Z; Wang S; Li X; Wu Y; Liu S; Wang G Chem Asian J; 2018 Feb; 13(3):342-349. PubMed ID: 29281173 [TBL] [Abstract][Full Text] [Related]
76. Phytic Acid Customized Hydrogel Polymer Electrolyte and Prussian Blue Analogue Cathode Material for Rechargeable Zinc Metal Hydrogel Batteries. Dilwale S; Puthiyaveetil PP; Babu A; Kurungot S Small; 2024 Aug; 20(34):e2311923. PubMed ID: 38616777 [TBL] [Abstract][Full Text] [Related]
77. Prussian Blue Analogue with Fast Kinetics Through Electronic Coupling for Sodium Ion Batteries. Nie P; Yuan J; Wang J; Le Z; Xu G; Hao L; Pang G; Wu Y; Dou H; Yan X; Zhang X ACS Appl Mater Interfaces; 2017 Jun; 9(24):20306-20312. PubMed ID: 28570041 [TBL] [Abstract][Full Text] [Related]
78. Interface and electronic structure engineering induced Prussian blue analogues with ultra-stable capability for aqueous NH Hou W; Yan C; Shao P; Dai K; Yang J Nanoscale; 2022 Jun; 14(23):8501-8509. PubMed ID: 35665797 [TBL] [Abstract][Full Text] [Related]
79. Self-Assembled Layer of Organic Phosphonic Acid Enables Highly Stable MnO2 Cathode for Aqueous Znic Batteries. Xiao X; Zhang L; Xin W; Yang M; Geng Y; Niu M; Zhang H; Zhu Z Small; 2024 Jun; 20(24):e2309271. PubMed ID: 38178225 [TBL] [Abstract][Full Text] [Related]
80. Potassium Nickel Iron Hexacyanoferrate as Ultra-Long-Life Cathode Material for Potassium-Ion Batteries with High Energy Density. Chong S; Yang J; Sun L; Guo S; Liu Y; Liu HK ACS Nano; 2020 Aug; 14(8):9807-9818. PubMed ID: 32709197 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]