These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39223919)

  • 21. Direct Current Electrokinetic Particle Trapping in Insulator-Based Microfluidics: Theory and Experiments.
    Cardenas-Benitez B; Jind B; Gallo-Villanueva RC; Martinez-Chapa SO; Lapizco-Encinas BH; Perez-Gonzalez VH
    Anal Chem; 2020 Oct; 92(19):12871-12879. PubMed ID: 32894016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrothermal pumping with interdigitated electrodes and resistive heaters.
    Williams SJ; Green NG
    Electrophoresis; 2015 Aug; 36(15):1681-9. PubMed ID: 26010255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dielectrophoretic trapping of single bacteria at carbon nanofiber nanoelectrode arrays.
    Arumugam PU; Chen H; Cassell AM; Li J
    J Phys Chem A; 2007 Dec; 111(49):12772-7. PubMed ID: 17999481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarization behavior of polystyrene particles under direct current and low-frequency (<1 kHz) electric fields in dielectrophoretic systems.
    Saucedo-Espinosa MA; Rauch MM; LaLonde A; Lapizco-Encinas BH
    Electrophoresis; 2016 Feb; 37(4):635-44. PubMed ID: 26531799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles.
    Walid Rezanoor M; Dutta P
    Biomicrofluidics; 2016 Mar; 10(2):024101. PubMed ID: 27014394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous-flow trapping and localized enrichment of micro- and nano-particles using induced-charge electrokinetics.
    Zhao C; Yang C
    Soft Matter; 2018 Feb; 14(6):1056-1066. PubMed ID: 29335710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dielectrophoretic Manipulation of Janus Particle in Conductive Media for Biomedical Applications.
    Lee M; Won JB; Jung DH; Kim J; Choi Y; Akyildiz K; Choi J; Kim K; Cho J; Yoon H; Koo HJ
    Biotechnol J; 2020 Dec; 15(12):e2000343. PubMed ID: 33067912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping alternating current electroosmotic flow at the dielectrophoresis crossover frequency of a colloidal probe.
    Wang J; Wei MT; Cohen JA; Ou-Yang HD
    Electrophoresis; 2013 Jul; 34(13):1915-21. PubMed ID: 23616351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dielectrophoretic separation of bioparticles in microdevices: a review.
    Jubery TZ; Srivastava SK; Dutta P
    Electrophoresis; 2014 Mar; 35(5):691-713. PubMed ID: 24338825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of assembling ZnO nanoparticles into nanogap electrodes for nanoscale electronic device applications.
    Seo YK; Kumar S; Kim GH
    J Nanosci Nanotechnol; 2011 Jun; 11(6):4852-62. PubMed ID: 21770114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical and experimental examination of particle-particle interaction effects on induced dipole moments and dielectrophoretic responses of multiple particle chains.
    Moncada-Hernandez H; Nagler E; Minerick AR
    Electrophoresis; 2014 Jul; 35(12-13):1803-13. PubMed ID: 24658965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on non-bioparticles and
    Chen Q; Cao Z; Yuan YJ
    RSC Adv; 2020 Jan; 10(5):2598-2614. PubMed ID: 35496126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative measurements of dielectrophoresis in a nanoscale electrode array with an atomic force microscopy.
    Froberg J; Jayasooriya V; You S; Nawarathna D; Choi Y
    Appl Phys Lett; 2017 May; 110(20):203701. PubMed ID: 28611486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The latest advances on nonlinear insulator-based electrokinetic microsystems under direct current and low-frequency alternating current fields: a review.
    Lapizco-Encinas BH
    Anal Bioanal Chem; 2022 Jan; 414(2):885-905. PubMed ID: 34664103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transitioning Streaming to Trapping in DC Insulator-based Dielectrophoresis for Biomolecules.
    Camacho-Alanis F; Gan L; Ros A
    Sens Actuators B Chem; 2012 Oct; 173():668-675. PubMed ID: 23441049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-frequency electrokinetics in a periodic pillar array for particle separation.
    Calero V; Fernández-Mateo R; Morgan H; García-Sánchez P; Ramos A
    J Chromatogr A; 2023 Sep; 1706():464240. PubMed ID: 37544238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AC electrokinetic biased deterministic lateral displacement for tunable particle separation.
    Calero V; Garcia-Sanchez P; Honrado C; Ramos A; Morgan H
    Lab Chip; 2019 Apr; 19(8):1386-1396. PubMed ID: 30912779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible and freestanding supercapacitor based on nanostructured poly(m-aminophenol)/carbon nanofiber hybrid mats with high energy and power densities.
    Choudhury A; Dey B; Mahapatra SS; Kim DW; Yang KS; Yang DJ
    Nanotechnology; 2018 Apr; 29(16):165401. PubMed ID: 29334481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-Dimensional Reservoir-Based Dielectrophoresis (rDEP) for Enhanced Particle Enrichment.
    Kale A; Patel S; Xuan X
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.