These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 39224076)
1. Bile acids impact the microbiota, host, and McMillan AS; Theriot CM Gut Microbes; 2024; 16(1):2393766. PubMed ID: 39224076 [No Abstract] [Full Text] [Related]
2. Understanding the mechanisms of efficacy of fecal microbiota transplant in treating recurrent Martinez-Gili L; McDonald JAK; Liu Z; Kao D; Allegretti JR; Monaghan TM; Barker GF; Miguéns Blanco J; Williams HRT; Holmes E; Thursz MR; Marchesi JR; Mullish BH Gut Microbes; 2020 Nov; 12(1):1810531. PubMed ID: 32893721 [TBL] [Abstract][Full Text] [Related]
3. The role of the gut microbiome in colonization resistance and recurrent Seekatz AM; Safdar N; Khanna S Therap Adv Gastroenterol; 2022; 15():17562848221134396. PubMed ID: 36425405 [TBL] [Abstract][Full Text] [Related]
4. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Mullish BH; McDonald JAK; Pechlivanis A; Allegretti JR; Kao D; Barker GF; Kapila D; Petrof EO; Joyce SA; Gahan CGM; Glegola-Madejska I; Williams HRT; Holmes E; Clarke TB; Thursz MR; Marchesi JR Gut; 2019 Oct; 68(10):1791-1800. PubMed ID: 30816855 [TBL] [Abstract][Full Text] [Related]
5. Effective fecal microbiota transplantation for recurrent Clostridioides difficile infection in humans is associated with increased signalling in the bile acid-farnesoid X receptor-fibroblast growth factor pathway. Monaghan T; Mullish BH; Patterson J; Wong GK; Marchesi JR; Xu H; Jilani T; Kao D Gut Microbes; 2019; 10(2):142-148. PubMed ID: 30183484 [TBL] [Abstract][Full Text] [Related]
6. Gut microbiome and plasma lipidome analysis reveals a specific impact of Arcay R; Barceló-Nicolau M; Suárez L; Martín L; Reigada R; Höring M; Liebisch G; Garrido C; Cabot G; Vílchez H; Cortés-Lara S; González de Herrero E; López-Causapé C; Oliver A; Barceló-Coblijn G; Mena A mBio; 2024 Oct; 15(10):e0134724. PubMed ID: 39189787 [TBL] [Abstract][Full Text] [Related]
8. Fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile (Clostridium difficile). Minkoff NZ; Aslam S; Medina M; Tanner-Smith EE; Zackular JP; Acra S; Nicholson MR; Imdad A Cochrane Database Syst Rev; 2023 Apr; 4(4):CD013871. PubMed ID: 37096495 [TBL] [Abstract][Full Text] [Related]
9. Changes in microbial ecology after fecal microbiota transplantation for recurrent C. difficile infection affected by underlying inflammatory bowel disease. Khanna S; Vazquez-Baeza Y; González A; Weiss S; Schmidt B; Muñiz-Pedrogo DA; Rainey JF; Kammer P; Nelson H; Sadowsky M; Khoruts A; Farrugia SL; Knight R; Pardi DS; Kashyap PC Microbiome; 2017 May; 5(1):55. PubMed ID: 28506317 [TBL] [Abstract][Full Text] [Related]
10. The microbial-derived bile acid lithocholate and its epimers inhibit Kisthardt SC; Thanissery R; Pike CM; Foley MH; Theriot CM J Bacteriol; 2023 Sep; 205(9):e0018023. PubMed ID: 37695856 [No Abstract] [Full Text] [Related]
11. Changes in microbiota composition, bile and fatty acid metabolism, in successful faecal microbiota transplantation for Clostridioides difficile infection. Brown JR; Flemer B; Joyce SA; Zulquernain A; Sheehan D; Shanahan F; O'Toole PW BMC Gastroenterol; 2018 Aug; 18(1):131. PubMed ID: 30153805 [TBL] [Abstract][Full Text] [Related]
12. Ursodeoxycholic Acid (UDCA) Mitigates the Host Inflammatory Response during Clostridioides difficile Infection by Altering Gut Bile Acids. Winston JA; Rivera AJ; Cai J; Thanissery R; Montgomery SA; Patterson AD; Theriot CM Infect Immun; 2020 May; 88(6):. PubMed ID: 32205405 [No Abstract] [Full Text] [Related]
13. Inhibiting Growth of Clostridioides difficile by Restoring Valerate, Produced by the Intestinal Microbiota. McDonald JAK; Mullish BH; Pechlivanis A; Liu Z; Brignardello J; Kao D; Holmes E; Li JV; Clarke TB; Thursz MR; Marchesi JR Gastroenterology; 2018 Nov; 155(5):1495-1507.e15. PubMed ID: 30025704 [TBL] [Abstract][Full Text] [Related]
14. Gut associated metabolites and their roles in Aguirre AM; Sorg JA Gut Microbes; 2022; 14(1):2094672. PubMed ID: 35793402 [TBL] [Abstract][Full Text] [Related]
15. Diluted Fecal Community Transplant Restores Clostridioides difficile Colonization Resistance to Antibiotic-Perturbed Murine Communities. Lesniak NA; Tomkovich S; Henry A; Taylor A; Colovas J; Bishop L; McBride K; Schloss PD mBio; 2022 Aug; 13(4):e0136422. PubMed ID: 35913161 [TBL] [Abstract][Full Text] [Related]
16. The evaluation of fecal microbiota transplantation vs vancomycin in a Clostridioides difficile infection model. Xu Q; Zhang S; Quan J; Wu Z; Gu S; Chen Y; Zheng B; Lv L; Li L Appl Microbiol Biotechnol; 2022 Oct; 106(19-20):6689-6700. PubMed ID: 36085529 [TBL] [Abstract][Full Text] [Related]
17. Clostridioides difficile infection induces a rapid influx of bile acids into the gut during colonization of the host. Wexler AG; Guiberson ER; Beavers WN; Shupe JA; Washington MK; Lacy DB; Caprioli RM; Spraggins JM; Skaar EP Cell Rep; 2021 Sep; 36(10):109683. PubMed ID: 34496241 [TBL] [Abstract][Full Text] [Related]
18. Shengjiang Xiexin decoction mitigates murine Clostridium difficile infection through modulation of the gut microbiota and bile acid metabolism. Yu XH; Lv Z; Zhang CE; Gao Y; Li H; Ma XJ; Ma ZJ; Su JR; Huang LQ J Ethnopharmacol; 2024 Feb; 320():117384. PubMed ID: 37925000 [TBL] [Abstract][Full Text] [Related]