These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 39224361)

  • 1. Artificial intelligence algorithms permits rapid acute kidney injury risk classification of patients with acute myocardial infarction.
    Wei J; Cai D; Xiao T; Chen Q; Zhu W; Gu Q; Wang Y; Wang Q; Chen X; Ge S; Sun L
    Heliyon; 2024 Aug; 10(16):e36051. PubMed ID: 39224361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting acute kidney injury risk in acute myocardial infarction patients: An artificial intelligence model using medical information mart for intensive care databases.
    Cai D; Xiao T; Zou A; Mao L; Chi B; Wang Y; Wang Q; Ji Y; Sun L
    Front Cardiovasc Med; 2022; 9():964894. PubMed ID: 36158815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of an Explainable Deep Learning Model to Predict In-Hospital Mortality for Patients With Acute Myocardial Infarction: Algorithm Development and Validation Study.
    Xie P; Wang H; Xiao J; Xu F; Liu J; Chen Z; Zhao W; Hou S; Wu D; Ma Y; Xiao J
    J Med Internet Res; 2024 May; 26():e49848. PubMed ID: 38728685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning to Predict Contrast-Induced Acute Kidney Injury in Patients With Acute Myocardial Infarction.
    Sun L; Zhu W; Chen X; Jiang J; Ji Y; Liu N; Xu Y; Zhuang Y; Sun Z; Wang Q; Zhang F
    Front Med (Lausanne); 2020; 7():592007. PubMed ID: 33282893
    [No Abstract]   [Full Text] [Related]  

  • 5. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model.
    Lin K; Hu Y; Kong G
    Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the risk factors of diabetic ketoacidosis-associated acute kidney injury: A machine learning approach using XGBoost.
    Fan T; Wang J; Li L; Kang J; Wang W; Zhang C
    Front Public Health; 2023; 11():1087297. PubMed ID: 37089510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Development and validation of a clinical predictive model for the risk of malignant ventricular arrhythmia during hospitalization in patients with acute myocardial infarction].
    Sun L; Mao L; Zou A; Chi B; Chen X; Ji Y; Jiang J; Zhou X; Wang Q
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2021 Apr; 33(4):438-442. PubMed ID: 34053487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].
    Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of acute kidney injury in patients with liver cirrhosis using machine learning models: evidence from the MIMIC-III and MIMIC-IV.
    Tian J; Cui R; Song H; Zhao Y; Zhou T
    Int Urol Nephrol; 2024 Jan; 56(1):237-247. PubMed ID: 37256426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of real-time individualized risk prediction models for contrast associated acute kidney injury and 30-day dialysis after contrast enhanced computed tomography.
    Chen YY; Liu CF; Shen YT; Kuo YT; Ko CC; Chen TY; Wu TC; Shih YJ
    Eur J Radiol; 2023 Oct; 167():111034. PubMed ID: 37591134
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Pei Y; Miu M; Mao X; Chen W; Zhu J
    Int J Clin Pract; 2023; 2023():8244545. PubMed ID: 38187354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple machine learning model for the prediction of acute kidney injury following noncardiac surgery in geriatric patients: a prospective cohort study.
    Peng X; Zhu T; Chen Q; Zhang Y; Zhou R; Li K; Hao X
    BMC Geriatr; 2024 Jun; 24(1):549. PubMed ID: 38918723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements.
    Zimmerman LP; Reyfman PA; Smith ADR; Zeng Z; Kho A; Sanchez-Pinto LN; Luo Y
    BMC Med Inform Decis Mak; 2019 Jan; 19(Suppl 1):16. PubMed ID: 30700291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and evaluation of a mortality prediction model for patients with acute kidney injury undergoing continuous renal replacement therapy based on machine learning algorithms.
    Wang Y; Sun X; Lu J; Zhong L; Yang Z
    Ann Med; 2024 Dec; 56(1):2388709. PubMed ID: 39155811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal and external validation of machine learning-assisted prediction models for mechanical ventilation-associated severe acute kidney injury.
    Huang S; Teng Y; Du J; Zhou X; Duan F; Feng C
    Aust Crit Care; 2023 Jul; 36(4):604-612. PubMed ID: 35842332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine-learning-based models assist the prediction of pulmonary embolism in autoimmune diseases: A retrospective, multicenter study.
    Hu Z; Hu Y; Zhang S; Dong L; Chen X; Yang H; Su L; Hou X; Huang X; Shen X; Ye C; Tu W; Chen Y; Chen Y; Cai S; Zhong J; Dong L
    Chin Med J (Engl); 2024 Aug; 137(15):1811-1822. PubMed ID: 38863118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The predictive value of eGFR combined with BNP detection in acute kidney injury after acute myocardial infarction.
    Geng CY; Wang FZ; Zhang R; Liu YY; Wang J
    Afr Health Sci; 2023 Jun; 23(2):537-542. PubMed ID: 38223620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of hemoglobin level on the risk of acute kidney injury in patients with acute myocardial infarction].
    Sun L; Chi B; Mao L; Zou A; Wang Q; Jiang J; Ji Y; Zhou X
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Dec; 34(12):1243-1247. PubMed ID: 36567576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soluble interleukin-2 receptor predicts acute kidney injury and in-hospital mortality in patients with acute myocardial infarction.
    Liao J; Zhang M; Xu R; Wu R; Shi H; Jin Q; Fang Y; Xu J; Yao K; Xie Y; Ge J
    Int J Cardiol; 2023 Oct; 388():131156. PubMed ID: 37423564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derivation and validation of a prediction score for acute kidney injury secondary to acute myocardial infarction in Chinese patients.
    Xu FB; Cheng H; Yue T; Ye N; Zhang HJ; Chen YP
    BMC Nephrol; 2019 May; 20(1):195. PubMed ID: 31146701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.