These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Selecting active matter according to motility in an acoustofluidic setup: self-propelled particles and sperm cells. Misko VR; Baraban L; Makarov D; Huang T; Gelin P; Mateizel I; Wouters K; De Munck N; Nori F; De Malsche W Soft Matter; 2023 Nov; 19(44):8635-8648. PubMed ID: 37917007 [TBL] [Abstract][Full Text] [Related]
4. Harnessing Medium Anisotropy To Control Active Matter. Aranson IS Acc Chem Res; 2018 Dec; 51(12):3023-3030. PubMed ID: 30379534 [TBL] [Abstract][Full Text] [Related]
5. Designing Micro- and Nanoswimmers for Specific Applications. Katuri J; Ma X; Stanton MM; Sánchez S Acc Chem Res; 2017 Jan; 50(1):2-11. PubMed ID: 27809479 [TBL] [Abstract][Full Text] [Related]
7. Enhanced motility in a binary mixture of active nano/microswimmers. Debnath D; Ghosh PK; Misko VR; Li Y; Marchesoni F; Nori F Nanoscale; 2020 May; 12(17):9717-9726. PubMed ID: 32323694 [TBL] [Abstract][Full Text] [Related]
8. Opto-thermoelectric microswimmers. Peng X; Chen Z; Kollipara PS; Liu Y; Fang J; Lin L; Zheng Y Light Sci Appl; 2020; 9():141. PubMed ID: 32864116 [TBL] [Abstract][Full Text] [Related]
9. Synthetic Chemotaxis and Collective Behavior in Active Matter. Liebchen B; Löwen H Acc Chem Res; 2018 Dec; 51(12):2982-2990. PubMed ID: 30375857 [TBL] [Abstract][Full Text] [Related]
10. Collective behavior of penetrable self-propelled rods in two dimensions. Abkenar M; Marx K; Auth T; Gompper G Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062314. PubMed ID: 24483451 [TBL] [Abstract][Full Text] [Related]
11. Non-Gaussian statistics for the motion of self-propelled Janus particles: experiment versus theory. Zheng X; Ten Hagen B; Kaiser A; Wu M; Cui H; Silber-Li Z; Löwen H Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032304. PubMed ID: 24125265 [TBL] [Abstract][Full Text] [Related]
12. Discovering dynamic laws from observations: The case of self-propelled, interacting colloids. Ruiz-Garcia M; Barriuso G CM; Alexander LC; Aarts DGAL; Ghiringhelli LM; Valeriani C Phys Rev E; 2024 Jun; 109(6-1):064611. PubMed ID: 39020989 [TBL] [Abstract][Full Text] [Related]
13. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors. Wang W; Duan W; Ahmed S; Sen A; Mallouk TE Acc Chem Res; 2015 Jul; 48(7):1938-46. PubMed ID: 26057233 [TBL] [Abstract][Full Text] [Related]
15. Motion of a self-propelled particle with rotational inertia. Lisin EA; Vaulina OS; Lisina II; Petrov OF Phys Chem Chem Phys; 2022 Jun; 24(23):14150-14158. PubMed ID: 35648110 [TBL] [Abstract][Full Text] [Related]
16. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion. Löwen H J Chem Phys; 2020 Jan; 152(4):040901. PubMed ID: 32007042 [TBL] [Abstract][Full Text] [Related]
17. Magnetic Active Matter Based on Helical Propulsion. Mandal P; Patil G; Kakoty H; Ghosh A Acc Chem Res; 2018 Nov; 51(11):2689-2698. PubMed ID: 30346122 [TBL] [Abstract][Full Text] [Related]
18. Light-induced self-assembly of active rectification devices. Stenhammar J; Wittkowski R; Marenduzzo D; Cates ME Sci Adv; 2016 Apr; 2(4):e1501850. PubMed ID: 27051883 [TBL] [Abstract][Full Text] [Related]
19. Complex self-propelled rings: a minimal model for cell motility. Abaurrea Velasco C; Dehghani Ghahnaviyeh S; Nejat Pishkenari H; Auth T; Gompper G Soft Matter; 2017 Sep; 13(35):5865-5876. PubMed ID: 28766641 [TBL] [Abstract][Full Text] [Related]
20. Active Brownian particle in homogeneous media of different viscosities: numerical simulations. Lisin EA; Vaulina OS; Lisina II; Petrov OF Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]