These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 39225623)
1. Nanoscale dosimetry for a radioisotope-labeled metal nanoparticle using MCNP6.2 and Geant4. Kim T; Millares RH; Kim T; Eom M; Kim J; Ye SJ Med Phys; 2024 Sep; ():. PubMed ID: 39225623 [TBL] [Abstract][Full Text] [Related]
2. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes. Sakata D; Kyriakou I; Okada S; Tran HN; Lampe N; Guatelli S; Bordage MC; Ivanchenko V; Murakami K; Sasaki T; Emfietzoglou D; Incerti S Med Phys; 2018 May; 45(5):2230-2242. PubMed ID: 29480947 [TBL] [Abstract][Full Text] [Related]
3. Radial dependence of ionization clustering around a gold nanoparticle irradiated by X-rays under charged particle equilibrium. Thomas L; Schwarze M; Rabus H Phys Med Biol; 2024 Sep; 69(18):. PubMed ID: 39134027 [No Abstract] [Full Text] [Related]
4. Electron track structure simulations in a gold nanoparticle using Geant4-DNA. Sakata D; Kyriakou I; Tran HN; Bordage MC; Rosenfeld A; Ivanchenko V; Incerti S; Emfietzoglou D; Guatelli S Phys Med; 2019 Jul; 63():98-104. PubMed ID: 31221415 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo-based calculation of nano-scale dose enhancement factor and relative biological effectiveness in using different nanoparticles as a radiosensitizer. Robatjazi M; Baghani HR; Rostami A; Pashazadeh A Int J Radiat Biol; 2021; 97(9):1289-1298. PubMed ID: 34047663 [TBL] [Abstract][Full Text] [Related]
6. Metallic nanoparticles irradiated by low-energy protons for radiation therapy: Are there significant physical effects to enhance the dose delivery? Heuskin AC; Gallez B; Feron O; Martinive P; Michiels C; Lucas S Med Phys; 2017 Aug; 44(8):4299-4312. PubMed ID: 28543610 [TBL] [Abstract][Full Text] [Related]
7. Impact of fluorescence emission from gold atoms on surrounding biological tissue-implications for nanoparticle radio-enhancement. Byrne HL; Gholami Y; Kuncic Z Phys Med Biol; 2017 Apr; 62(8):3097-3110. PubMed ID: 28225353 [TBL] [Abstract][Full Text] [Related]
8. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Douglass M; Bezak E; Penfold S Med Phys; 2013 Jul; 40(7):071710. PubMed ID: 23822414 [TBL] [Abstract][Full Text] [Related]
9. A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other Monte Carlo codes. Papadimitroulas P; Loudos G; Nikiforidis GC; Kagadis GC Med Phys; 2012 Aug; 39(8):5238-47. PubMed ID: 22894448 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles. Martínez-Rovira I; Prezado Y Med Phys; 2015 Nov; 42(11):6703-10. PubMed ID: 26520760 [TBL] [Abstract][Full Text] [Related]
11. Modeling a hypothetical 170Tm source for brachytherapy applications. Enger SA; D'Amours M; Beaulieu L Med Phys; 2011 Oct; 38(10):5307-10. PubMed ID: 21992348 [TBL] [Abstract][Full Text] [Related]
12. Nanoscale gold nanoparticle (GNP)-laden tumor cell model and its use for estimation of intracellular dose from GNP-induced secondary electrons. Jayarathna S; Kaphle A; Krishnan S; Cho SH Med Phys; 2024 Sep; 51(9):6276-6291. PubMed ID: 38935922 [TBL] [Abstract][Full Text] [Related]
13. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy. Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of the microscopic dose enhancement for nanoparticle-enhanced Auger therapy. Sung W; Jung S; Ye SJ Phys Med Biol; 2016 Nov; 61(21):7522-7535. PubMed ID: 27716643 [TBL] [Abstract][Full Text] [Related]
15. Influence of gold nanoparticles embedded in water on nanodosimetry for keV photon irradiation. Poignant F; Monini C; Testa É; Beuve M Med Phys; 2021 Apr; 48(4):1874-1883. PubMed ID: 33150620 [TBL] [Abstract][Full Text] [Related]
16. Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons. Wälzlein C; Scifoni E; Krämer M; Durante M Phys Med Biol; 2014 Mar; 59(6):1441-58. PubMed ID: 24584098 [TBL] [Abstract][Full Text] [Related]
17. The effects of a transverse magnetic field on the dose enhancement of nanoparticles in a proton beam: a Monte Carlo simulation. Parishan M; Faghihi R; Kadoya N; Jingu K Phys Med Biol; 2020 Apr; 65(8):085002. PubMed ID: 32101796 [TBL] [Abstract][Full Text] [Related]
18. Monte Carlo assessment of low energy electron range in liquid water and dosimetry effects. Seniwal B; Mendes BM; Malano F; Pérez P; Valente M; Fonseca TCF Phys Med; 2020 Dec; 80():363-372. PubMed ID: 33285337 [TBL] [Abstract][Full Text] [Related]
19. Secondary Electrons in Gold Nanoparticle Clusters and Their Role in Therapeutic Ratio: The Outcome of a Monte Carlo Simulation Study. Akhdar H; Alanazi R; Alanazi N; Alodhayb A Molecules; 2022 Aug; 27(16):. PubMed ID: 36014528 [TBL] [Abstract][Full Text] [Related]
20. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale. Okada S; Murakami K; Incerti S; Amako K; Sasaki T Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]